Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 August 2025 | Story Somila Nazo | Photo Supplied
Prof Martin Nyaga
Prof Martin Nyaga delivered a keynote on Africa’s scientific leadership in genomics and global health at the African Academy of Sciences Summit in Accra, Ghana.

Prof Martin Nyaga, one of Africa’s foremost experts in genomics and global health, recently delivered a powerful call for Africa’s leadership in global science at the African Academy of Sciences (AAS) Summit in Accra, Ghana. 

As Head of the Next Generation Sequencing (NGS) Unit at the University of the Free State (UFS) and Director of the WHO Collaborating Centre for Vaccine Preventable Diseases Surveillance and Pathogen Genomics, Prof Nyaga urged the scientific community to recognise Africa not just as a participant in global research, but as a driver of innovation and change. 

 

A summit of vision and collaboration 

Themed Unpacking the Pact for the Future: Imperatives for Advancing Scientific Cooperation with Africa, the summit took place from 2 – 4 July 2025. Hosted by the AAS in partnership with the African Union, the Government of Ghana, the University of Ghana, and other global partners, the summit brought together leading scientists, policymakers, and international stakeholders to discuss Africa’s role in shaping the future of global science, research and innovation. 

The event was attended by high-level dignitaries, including the President of Ghana, His Excellency John Dramani Mahama, and the former President of Nigeria, His Excellency Olusegun Obasanjo – a clear indication of strong political will to prioritise science, health and innovation across the continent. 

 

Advancing Africa’s voice in global health 

On 2 July 2025, Prof Nyaga delivered his keynote address, Advances, Opportunities and Priorities for Global Health in Africa. He highlighted Africa’s growing capabilities in genomics and public health, underscoring the opportunities for scientific leadership. 

Following his address, he joined an expert panel with representatives from Tanzania, Ghana and Nigeria to discuss strategies for advancing scientific cooperation in global health. His contributions focused on: strengthening research collaborations; building capacity within Africa; increasing African ownership in health innovations, and enhancing the translation of research into policy and practice. 

Prof Nyaga also used the platform to spotlight the work of the UFS Next Generation Sequencing (UFS-NGS) Unit. As a WHO Collaborating Centre, the unit plays a critical role in pathogen tracking, monitoring vaccine-preventable diseases, and supporting public health preparedness across Africa and beyond. 

 “This engagement provided an opportunity to highlight the impactful research from the UFS-NGS Unit – not only in academic publications, but in demonstrating tangible public health benefits to policy makers,” said Prof Nyaga.  “It elevated the University of the Free State’s standing as a leader in genomic science, while opening new opportunities for collaboration for South Africa and the continent. Our research priorities are increasingly shaping global health and innovation agendas.” 

 

From Ghana to the G20 

The outcomes of the summit will feed into a communiqué to be presented at the 2025 G20 Summit, to be hosted by South Africa. Prof Nyaga’s thought leadership ensures that Africa’s scientific voice - and South Africa’s research priorities - will be represented at one of the world’s most influential multilateral platforms. 

For more information about UFS partnerships in Africa, contact the Office for International Affairs at partnerships@ufs.ac.za.  

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept