Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 August 2025 | Story Somila Nazo | Photo Supplied
Prof Martin Nyaga
Prof Martin Nyaga delivered a keynote on Africa’s scientific leadership in genomics and global health at the African Academy of Sciences Summit in Accra, Ghana.

Prof Martin Nyaga, one of Africa’s foremost experts in genomics and global health, recently delivered a powerful call for Africa’s leadership in global science at the African Academy of Sciences (AAS) Summit in Accra, Ghana. 

As Head of the Next Generation Sequencing (NGS) Unit at the University of the Free State (UFS) and Director of the WHO Collaborating Centre for Vaccine Preventable Diseases Surveillance and Pathogen Genomics, Prof Nyaga urged the scientific community to recognise Africa not just as a participant in global research, but as a driver of innovation and change. 

 

A summit of vision and collaboration 

Themed Unpacking the Pact for the Future: Imperatives for Advancing Scientific Cooperation with Africa, the summit took place from 2 – 4 July 2025. Hosted by the AAS in partnership with the African Union, the Government of Ghana, the University of Ghana, and other global partners, the summit brought together leading scientists, policymakers, and international stakeholders to discuss Africa’s role in shaping the future of global science, research and innovation. 

The event was attended by high-level dignitaries, including the President of Ghana, His Excellency John Dramani Mahama, and the former President of Nigeria, His Excellency Olusegun Obasanjo – a clear indication of strong political will to prioritise science, health and innovation across the continent. 

 

Advancing Africa’s voice in global health 

On 2 July 2025, Prof Nyaga delivered his keynote address, Advances, Opportunities and Priorities for Global Health in Africa. He highlighted Africa’s growing capabilities in genomics and public health, underscoring the opportunities for scientific leadership. 

Following his address, he joined an expert panel with representatives from Tanzania, Ghana and Nigeria to discuss strategies for advancing scientific cooperation in global health. His contributions focused on: strengthening research collaborations; building capacity within Africa; increasing African ownership in health innovations, and enhancing the translation of research into policy and practice. 

Prof Nyaga also used the platform to spotlight the work of the UFS Next Generation Sequencing (UFS-NGS) Unit. As a WHO Collaborating Centre, the unit plays a critical role in pathogen tracking, monitoring vaccine-preventable diseases, and supporting public health preparedness across Africa and beyond. 

 “This engagement provided an opportunity to highlight the impactful research from the UFS-NGS Unit – not only in academic publications, but in demonstrating tangible public health benefits to policy makers,” said Prof Nyaga.  “It elevated the University of the Free State’s standing as a leader in genomic science, while opening new opportunities for collaboration for South Africa and the continent. Our research priorities are increasingly shaping global health and innovation agendas.” 

 

From Ghana to the G20 

The outcomes of the summit will feed into a communiqué to be presented at the 2025 G20 Summit, to be hosted by South Africa. Prof Nyaga’s thought leadership ensures that Africa’s scientific voice - and South Africa’s research priorities - will be represented at one of the world’s most influential multilateral platforms. 

For more information about UFS partnerships in Africa, contact the Office for International Affairs at partnerships@ufs.ac.za.  

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept