Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

Wayde sets 200m SA record, and is world’s fastest in 2017
2017-06-13

 

Description: Wayde sets 200m SA record, banner Tags: Wayde sets 200m SA record, banner

Wayde van Niekerk is in great form leading up to the World Championships
in London in August. Photo: SASPA

 

He was the first South African to break the 20-second barrier in the 200m, but for the past two years Wayde van Niekerk had to be satisfied that fellow countryman Anaso Jobodwana was quicker. Now the Kovsie athlete isn’t only the national record holder again – he also is the fastest man on the planet in the 200m in 2017.

After Van Niekerk ran a 19.90, the world’s fastest this year, when he won the South African title in Potchefstroom in April, the American Christian Coleman (19.85) improved on that.

Personal best and 0.06 seconds quicker than Anaso
However, Van Niekerk ran a 19.84 in the 200m at the Racers Grand Prix in Kingston, Jamaica, on 11 June 2017. This was 0.06 seconds quicker than his personal best, and 0.03 seconds better than Jobodwana’s national record of 19.87 at the 2015 World Championships in Beijing. Van Niekerk was the first South African to run under 20 seconds in the 200m when he did so two years ago in 19.97 in Lucerne, Switzerland.

Same pace a second time in a week

It was also the second time in a week that the 400m world record-holder ran an 19.84 in the 200m. This after he did it on a temporary built track at the Boost Boston Games on 4 June 2017. The race was run on a straight street course and was therefore not officially recognised as a record.

“This is definitely a positive step forward,” Van Niekerk said, according to www.iaaf.org. “I felt that I was in pretty good shape last week in Boston, I wanted to repeat that here (in Kingston).”

He seems to be in good shape leading up to his attempt to run a double, his favourite 400m and the 200m, at the World Championships in London, England, in August.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept