Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

UFS responds to revocation of the accreditation of the SA Doping Control Laboratory by WADA
2017-07-01

The World Anti-Doping Agency (WADA) yesterday informed the South African Doping Control Laboratory (SADoCoL) at the University of the Free State (UFS) that the WADA accreditation status of the laboratory has been revoked.

This revocation does, however, not include the analysis of blood samples for the Athlete Biological Passport for which SADoCoL has been re-accredited in August 2016 and which the laboratory will continue to perform. It also does not impact at all on the testing of urine sport samples by the South African Institute of Drug-free Sport (SAIDS), who will continue to send such samples for testing to other WADA accredited laboratories, while blood samples will be tested at SADoCoL as before.

The revocation follows a year long period of suspension in which the laboratory had to develop its analytical capabilities and instate new systems and methodologies.  “In this period the laboratory worked diligently to realize all of these requirements and according to an inspection team from the WADA Laboratory Expert Group who visited the laboratory in February 2017, much has been done and the Laboratory is in a much better state than it was before the suspension in May 2016,” says prof Marthinus van der Merwe, Director of SADoCoL.

“However, there were certain aspects of these requirements that the laboratory could not achieve within the time-frame stipulated by WADA and therefore the organisation is bound by its rules and regulations to now revoke the accreditation status of the laboratory. Since much effort and resources have been invested in the laboratory in the last two years, the management of SADoCoL together with senior leadership of the UFS decided to go ahead and finalise all development in order to re-apply for WADA accreditation,” says prof van der Merwe. 

“The UFS fully acknowledges the hard work of SADoCoL during the period of development and is committed to support the laboratory in its endeavors to re-attain its status within the very specialised and highly regulated community of world-wide doping control laboratories.  The premium goal of the laboratory is still to fully serve the sporting community of South Africa and Africa according to the WADA guidelines for anti-doping control in Sport and it is confident to attain that with the support of all role players in this field,” says Prof Witthuhn, Vice-Rector: Research at the UFS.

Released by:
Lacea Loader (Director: Communication and Brand Management)
Telephone: +27 51 401 2584 | +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za
Fax: +27 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept