Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

UFS celebrates establishment of a new department
2008-09-26

 

 At the celebration of the establishment of the Department of Genetics are, from the left: Prof. Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS, Prof. Johan Spies, head of the Department of Genetics at the UFS, Prof. Chris Viljoen, associate professor at the UFS Department of Haematology and Cell Biology and previously associated with the Department of Genetics; seated: Prof. Paul Grobler, associate professor at the UFS Department of Genetics.
Photo: Stephen Collett

UFS celebrates establishment of a new department

The establishment of the Department of Genetics in the Faculty of Natural and Agricultural Sciences at the University of the Free State (FS) was recently celebrated on the Main Campus in Bloemfontein.

The department, which formed part of the Department of Plant Sciences, is the only of its kind in the country that conducts research in behavioural genetics. “With behavioural genetics we try to determine if certain human behaviour is hereditary or if it is as a result of the environment. Although this is the fastest growing field of specialty in the United States of America, it is still an unknown field in South Africa,” says Prof. Johan Spies, head of the Department of Genetics.

The other specialty fields of the department are forensic genetics and conservation genetics. “Forensic genetics looks at the compilation of the DNA of animals. Because of our academics’ expertise, the department is regularly requested by the South African Police Service to assist them with establishing the origin of animals – especially in the case of game poaching. We recently completed a research project on cheetahs where we had to establish if they were acquired illegally of part of the farmer’s game. The research showed that the cheetahs were part of the farmer’s own breed,” says Prof. Spies.

Another specialty field of the department is conservation genetics where the genetic variance of animals is researched. A lot of research is done on vervet monkeys to determine from which area in the country they originate. The study must be completed before the 3000 vervet monkeys currently in rehabilitation centres are set free. The behaviour of monkeys in rehabilitation is also being researched.

Prof. Spies says: “Student figures in Genetics show an annual increase of 8% per year for the past five years. The first group of master’s degree students in Genetics will start their studies next year.” The department is also regarded as a leader on Clivia research.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
25 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept