Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

Department celebrates 50th anniversary
2009-03-25

 
The first Departmental Head and the subsequent Departmental Chairpersons at the dinner on 14 March this year. From left: Proff Bernard Prior (1991-1998), Piet Lategan (1962-1990), Derek Litthauer (1998-2002) and James du Preez (2002-). These are all the Heads/Chairpersons of the Department since its founding in 1959, with the exception of Prof Hans Potgieter who acted as Head during 1959-1962.
Photo: Stephen Collett
 
Department celebrates 50th anniversary

On 13 March the Department Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS) celebrated its 50th anniversary in a splendid fashion with a lecture entitled, The origin of life: Exactly how did life begin? as part of the Darwin commemorative lecture series, followed by a reunion of current and former staff members and postgraduate students of the department with a barbeque on the following day.

The proceedings were concluded on 14 March with a gala dinner in die Centenary Complex at the UFS attended by 153 staff members, post-graduate students (current and former) and other guests. During the dinner the guests were treated to a presentation of historical photos of the founding and development of the department. Currently the department is one of the largest departments in the Faculty of Natural and Agricultural Sciences in respect of the number of staff members and students as well as research outputs. This is the result of entrepreneurial actions to increase student numbers and research activities, as well as the merging with the smaller Department of Biochemistry in 1988 and more recently with the Department of Food Science in 2002. The department comprises 20 academics, 24 support staff and 65 postgraduate students. It also boasts 12 lecturers with ratings from the National Research Foundation (NRF), which include three academics with a B-rating, an indication of international recognition for their research. The department has the largest number of lecturers with an NRF-rating at the UFS. 

“It was interesting to learn during the reunion of the variety of professions occupied by former students of the department, i.e. at other tertiary educational institutions, the CSSIR, SAPPI, Sasol and a multitude of other industries, as well as at research institutions in the USA and Australia,” said Prof. James du Preez, Head of the Department.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept