Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

UFS takes the lead in solar heating in the Free State
2010-06-03

In the “engine room” of the solar heating system of the Vergeet-my-nie Residence with the big hot water tanks in the background. From the left are Mr Anton Calitz, Electrical Engineer of the UFS, and Mr Nico Janse van Renburg, Manager: Physical Planning at the UFS.
Photo: Leatitia Pienaar


The University of the Free State (UFS) took a further step in reducing its carbon footprint and its dependency on coal fired electricity with the installation of a solar heating system at one of its residences. The contractor handed the system over to the UFS on Wednesday, 2 June 2010.

The system installed at the Vergeet-my-nie Residence is the first commercial solar water heating project in both Bloemfontein and at the UFS. It is estimated that it will provide in 70% of the residence’s energy needs and save approximately R101 000 per annum in electricity cost. The project was completed at a cost of R2,4 million.

More residences at the UFS will be refurbished with solar systems as the existing heating systems in the rest of the twenty residences are due for replacement.

The energy crisis of 2008, and the challenges and necessity to reduce the use of electricity, sparked the initiative around the installation of solar heating systems at the UFS. The UFS is the second largest energy user in Bloemfontein.

Mr Nico Janse van Rensburg, Manager: Physical Planning at the UFS, says the management of the UFS saw an opportunity in the crisis and pro-actively embarked to become a market leader. Solar heating would not only alleviate the electricity problem of South Africa, but will impact the ever increasing electricity bill of the UFS.

“Protecting the environment and being on the cutting edge of technology are core issues to the UFS,” says Janse van Rensburg. “We are an educational institution and take pride in practicing what we preach.”

Media Release
Issued by: Lacea Loader
Director: Strategic Communication (acting)
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl@ufs.ac.za  
3 June 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept