Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

Stress and fear on wild animals examined
2013-06-04

 

Dr Kate Nowak in the Soutpansberg Mountain
Photo: Supplied
04 June 2013

Have you ever wondered how our wild cousins deal with stress? Dr Kate Nowak, visiting postdoctoral researcher at the Zoology and Entomology Department at the UFS Qwaqwa Campus, has been assigned the task to find out. She is currently conducting research on the effects that stress and fear has on primate cognition.

The Primate and Predator project has been established over the last two years, following Dr Aliza le Roux’s (also at the Zoology and Entomology Department at Qwaqwa) interest in the effects of fear on primate cognition. Dr le Roux collaborates with Dr Russel Hill of Durham University (UK) at the Lajuma Research Centre in Limpopo and Dr Nowak has subsequently been brought in to conduct the study.

Research on humans and captive animals has indicated that stress can powerfully decrease individuals’ cognitive performance. Very little is known about the influence of stress and fear on the cognition of wild animals, though. Dr Nowak will examine the cognition of wild primates during actual risk posed by predators. This is known as the “landscape of fear” in her research.

“I feel very privileged to be living at Lajuma and on top of a mountain in the Soutpansberg Mountain Range. We are surrounded by nature – many different kinds of habitats including a tall mist-belt forest and a variety of wildlife which we see regularly, including samangos, chacma baboons and vervet monkeys, red duiker, rock hyrax, banded mongooses, crowned eagles, crested guinea fowl and cape batis. And of course those we don't see but find signs of, such as leopard, genet, civet and porcupine. Studying the behaviour of wild animals is a very special, and very humbling, experience, reminding us of the diversity of life of which humans are only a very small part,” said Dr Nowak.

At present, the research team is running Giving up Densities (GUD) experiments. This represents the process during which an animal forsakes a patch dense with food to forage at a different spot. The animal faces a trade-off between meeting energy demands and safety – making itself vulnerable to predators such as leopards and eagles. Dr le Roux said that, “researchers from the US and Europe are embracing cognitive ecology, revealing absolutely stunning facts about what animals can and can’t do. Hence, I don’t see why South Africans cannot do the same.”

Dr Nowak received the Claude Leon Fellowship for her project. Her research as a trustee of the foundation will increase the volume and quality of research output at the UFS and enhance the overall culture of research. Her analysis on the effect that stress and fear have on wild primates’ cognition will considerably inform the emerging field of cognitive ecology.

The field of cognitive ecology is relatively new. The term was coined in the 1990s by Les Real to bring together the fields of cognitive science and behavioural ecology.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept