Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

DNA sequencer launched at the UFS
2013-11-25

Dr Gansen Pillay, Deputy Chief Executive Officer of the National Research Foundation, explaining to the scholars what will be expected of them.

The University of the Free State (UFS) can now collect immensely valuable data on drug resistance in HIV/Aids and TB with the new DNA sequencer that was launched recently at the International workshop on HIV/AIDS and TB drug resistance at the Bloemfontein Campus.

The DNA sequencer will allow the Free State province to produce viral and bacterial genetic data to fight the local development of HIV/ Aids and TB drug resistance.

The HIV and TB epidemics have expanded very fast and South Africa now has the largest HIV and TB treatment programme in the world, with over 2 million patients on treatment. However, these successful treatment programmes are now being threatened by the appearance of drug resistance.

The Free State province has been at the forefront of fighting HIV drug resistance in South Africa and has one of the most advanced treatment programmes for the management of resistance strains in the country. In addition, researchers at the University of the Free State are leading partners in the Southern African Treatment and Resistance Network (SATuRN; www.bioafrica.net/saturn), a research network that has trained over 2 000 medical officers in the treatment of drug resistance strains.

The Department of Medical Microbiology and Virology in the Medical School at the UFS has partnered with the provincial department of health, the Medical Research Council (MRC) and the Delegation of the European Union to South Africa to fund a dedicated DNA sequencer machine that will be used to generate HIV and TB drug-resistance results. This new machine will enable cutting-edge research to take place, using the data in the province and, importantly, support patients with resistance strains to have access to advanced genotypic testing techniques.

“HIV drug resistance is a very serious problem in South Africa, and the recent advances in DNA testing technology allow clinicians in the province to access drug resistance testing, which enables them to manage patients appropriately who fail treatment, and use the results to cost-effectively extend and improve patients’ lives,” says Dr Cloete van Vuuren, Specialist in Infectious Diseases at the UFS’s Faculty of Health.

Dr Dominique Goedhals, pathologist from the Department of Medical Microbiology and Virology at the UFS, adds: “We have been looking forward to expanding our work with the clinicians and researchers, using DNA sequencing to shed light on the causes and consequences of drug resistance in urban and rural settings in the province.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept