Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

R40 million construction contract with black empowerment group starts at UFS
2006-09-04

During the ceremonial kick-off of the biggest construction project in the history of the UFS were from the left: Ms Vuyiwe Mkhupha (Manager of   Sikeyi Construction), Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS) and Prof Steve Basson (Head of the UFS Department of Chemistry). Photo: (Gerhard Louw)

R40 million construction contract with black empowerment group starts at UFS   

The biggest construction contract in the history of the University of the Free State (UFS) to the value of R40 million has started on the Main Campus in Bloemfontein.  The contractors are Ströhfeldt Construction, in a joint venture with Sikeyi Construction, a black empowerment partner.

The contract comprises the extensive modernising, refurnishing and extension of the Chemistry Building.  This is the highest amount the UFS has ever spent on the refurnishing of a building. 
 
A number of initiatives have contributed to the fact that the UFS Department of Chemistry is one of the foremost chemistry departments in the country:
 

  • Expensive equipment and apparatus to the value of almost R20 million were acquired by the department the past year;
  • The basis of this is a strategic partnership with Sasol, the biggest research and development company  in the country;
  • The purchase of the most advanced 600MHz nuclear magnetic resonance spectro meter in Africa;
  • The purchase of a single crystal X-ray diffractometer; and
  • The purchase of a differential scanning calorie meter, used to test the effect of heat on chemicals.  This apparatus comprises of the most advanced detectors in the world.

“Natural scientists need the necessary equipment, apparatus and laboratories to be able to exercise world-class science.  Three years ago the UFS top management made a strategic decision to focus strongly on research and on our  laboratories and lecture halls,“ said Prof Frederick Fourie, Rector and Vice-Chancellor of the UFS, during the launch of the Chemistry Building’s refurbishment.

“I regard this project as a symbol of our investment in science and the academy,“ said Prof Fourie.

Prof Fourie said that the UFS spent almost R100 million in the last 5 years to renovate the Main Campus.  New buildings such as Thakaneng Bridge were built and other such as the Reitz Dining Hall was renovated and converted into the Centenary Complex.  “These projects, together with the refurbishment of the Chemistry Building, also show how the UFS contributes to the development and growth of not only Bloemfontein, but also how we invest in the Free State,“ said Prof Fourie.

According to Ms Edma Pelzer, Director: Physical Planning and Special Projects at the UFS, the current building originally comprised of the Moerdyk Building built in 1949 and a newer wing built in 1966.  This building became too small and obsolete and a new part is now being added to the eastern side.
  
According to Ms Pelzer a great deal of the project comprises the dramatic upgrading and modernising of laboratories, existing mechanical systems and the installation of new systems.  “The nature of the work of staff and students demands sophisticated mechanical systems such as air conditioning, fume hoods, the provision of gas, etc and therefore these received specific attention.  The research laboratories, lecture laboratories and office areas will also be separated for safety and greater efficiency,” said Ms Pelzer.

“Interesting design solutions for the complex needs of the department were found and I foresee that the building and its immediate environment will be an adornment to the Main Campus after its expected completion in 2008,” said Ms Pelzer.

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
14 September 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept