Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

School of Medicine expands to provide quality tuition
2015-04-20

 

The School of Medicine at the University of the Free State (UFS) has recently extended various training platforms to provide continuous quality tuition to students.

Not only does the school boast a world-class dissection hall but now has plans for additional training facilities at two more hospitals.

The new dissection hall was completed in January 2015 with some final finishing touches that will be done shortly. The hall is newly built as the previous dissection hall has been used for undergraduate anatomy training since 1972.

Dr Sanet van Zyl, Senior Lecturer in the Department of Basic Medical Science, says owing to a prospective growth in the number of medical students as well as changing methods in teaching and learning, the need for a new dissection hall became evident to ensure that students get an optimal learning experience during dissection tuition.

“The new spacious dissection hall is equipped with special lighting and modern equipment for the training programme for second-year medical students. The hall is further equipped with modern sound and computer equipment. A unique camera system will allow students to follow dissection demonstrations on ten screens in the hall. Dissection demonstrations can also be recorded, enabling lecturers to put together new materials for teaching and learning.”

In addition to anatomy teaching for under- and postgraduate medical students, the Department of Basic Medical Science also offers anatomy teaching to under-graduate students from the School of Nursing, the School of Allied Health Professions as well as students from the Natural and Agricultural Sciences (such as students studying Forensic Science). The old dissection hall will still be used for the anatomy training of these students.

“The dissection programme for medical students is of critical importance, not only to acquire anatomical knowledge, but also for the development of critical skills and professionalism of our students. As already mentioned, these modern facilities will enable us to be at the forefront of current development in this field. This will benefit both present and future generations of medical students.”

At the same time, Prof Alan St. Clair Gibson, Head of the School of Medicine, announced that lecturing facilities are being developed at the Kimberley Hospital Complex. There are also plans for study facilities at the UFS’s Qwaqwa Campus and Bongani Hospital in Welkom. The UFS’s planning is also well underway for lecturing and residential facilities for students in Trompsburg, where students will receive training at the Trompsburg Hospital.

“We are very privileged to have these facilities and they will help us to provide world class training for students in the School of Medicine,” Prof St. Clair Gibson says.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept