Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

Machinery and equipment to the value of R6 million acquired by UFS Instrumentation Division
2015-07-02

Photo: Supplied

At an information session held on the Bloemfontein Campus, the Instrumentation Division in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) introduced its new Computer Numeral Control (CNC) machines to the value of R6 million.

Initially, the primary aim of the Instrumentation workshop was to design, produce, and maintain special research equipment which is unavailable on the market, mainly for academic departments. The small-scale production focused on producing support material and equipment for research work.

However, with new equipment and machinery the Division now also can deliver a service to corporate companies and external associates.
 
The CNC machines include a 5-axis Vertical Machining Centre from Haas imported from America. This is one of only four in South Africa, with two in Johannesburg and one in Cape Town.  The lathe makes it possible to produce sophisticated parts, which were previously cumbersome and difficult to make. The machines also cover a wide spectrum in the mechanical field such as the the FLOW Water Jet, which cuts a wide variety of material ranging from titanium to wood without utilising heat, thus saving electricity. This makes it possible to cut a wide variety of materials.

With the new machinery now available, the Instrumentation Division is able to perform high quality and quantity production with precision.

“The advantage of the machinery is that it stimulates production, and is much faster and more accurate than the conventional way of doing things,” said Pieter Botes, Head of the Division.

Botes explained that, by having students and professional artisans at the university design and manufacture equipment, costs are reduced when compared with the expensive nature of equipment and tools found in the market. In addition, “the machines broaden the scope of research conducted” said Botes. The technical dynamics of the machinery advances the scientific knowledge needed to operate it, so bridging the gap between theory and practice.

The Central University of Technology, Signs Division Bloemfontein, Product Development Technology Station (PDTS), Maizey’s, and Knottco Truckparts are some of the university’s trade partners.

The workshop collaborates with the Chemistry, Physics, Microbiology, Botany, Agriculture, and Electronics departments, as well as the Institute of Groundwater Studies at the UFS, and others. These departments receive services in the form of pipette stands, containers for test tubes, bottles, laboratory trolleys, stands for cadavers for Anatomy, pump repairs, stainless steel bailers, filaments, and heaters.

The Instrumentation Division is, therefore, a vital support unit for the Faculty of Natural and Agricultural Sciences as well as the university at large.

Companies, institutions, or individuals who need the Division’s expertise may contact Pieter Botes on botespds@ufs.ac.za.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept