Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

Researchers reach out across continents in giraffe research
2015-09-18

Dr Francois Deacon and Prof Fred Bercovitch
busy with field work.

Researcher Dr Francois Deacon from the Department of Animal, Wildlife, and Grassland Sciences at the University of the Free State is conducting research with renowned wildlife scientist, Prof Fred Bercovitch, from the Center for International Collaboration and Advanced Studies in Primatology, Kyoto University Primate Research Institute in Japan.

Dr Deacon’s ground-breaking research has attracted international media attention. Together with Prof Nico Smit, he equipped giraffes with GPS collars, and conducted research based on this initiative. “Satellite tracking is proving to be extremely valuable in the wildlife environment. The unit is based on a mobile global two-way communication platform, utilising two-way data satellite communication, complete with GPS systems.”

Prof Bercovitch was involved with GPS tracking from elephants to koala bears.

Some of the highlights of the joint research on giraffes by Dr Deacon and Prof Bercovitch focus on:
 
• How much time do certain giraffes spend with, and away from, one another
• How do the home ranges of herds and individual giraffe overlap
• Do genetically-related animals spend more time together than non-genetically-related animals
• How much time do the young bulls, adult bulls, and dominant bulls spend with cow herds
• Herd interactions and social behaviours of giraffe
• The role of the veld and diet on animal behaviour and distribution

 

Their research article, “Gazing at a giraffe gyroscope: Where are we going?”, which was published in the African Journal of Ecology, assesses recent research by exploring five primary questions:

- How many (sub) species of giraffe exist?
- What are the dynamics of giraffe herds?
- How do giraffe communicate?
- What is the role of sexual selection in giraffe reproduction?
- How many giraffe reside in Africa?

They conclude this article by emphasising that the most essential issue is to develop conservation management plans that will save a wonderful species from extinction, and which will also enable scientists to conduct additional research aimed at answering their five questions.

In addition, they are working together on a grand proposal to get National Geographic to cover their work.

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept