Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

Giraffe research broadcast on National Geographic channel
2016-03-09

Description: Giraffe research  Tags: Giraffe research

A documentary focusing on the latest and most interesting research about giraffes was recently broadcasted on National Geographic. Dr Francois Deacon from the UFS Department of Animal, Wildlife and Grassland Sciences and the team of researchers working with him, were first in the world to equip giraffes with GPS collars, and to conduct research on them.

Research by Dr Francois Deacon, from the UFS Department of Animal, Wildlife and Grassland Sciences, involving the equipping of giraffes with GPS collars, was broadcast this week as part of a documentary (4 March 2016 and subsequent weeks) on National Geographic (Channel 182). The documentary is the first of two on his team's research.

Dr Deacon and the team of researchers working with him were the first in the world to equip giraffes with GPS collars, and to conduct research on this initiative. The group of researchers can now follow the animals night and day by means of the GPS collars, while monitoring their movements from a distance on a computer screen and seeing the world from a giraffe's perspective.

“The documentary focuses on the latest and interesting information about our research in different countries,” Dr Deacon said. Besides their local research on giraffes, he and his team also assist in other projects and research in Namibia, Botswana, Zambia, Kenya, the Democratic Republic of the Congo, and Uganda.

“There is much to learn from the documentary,” Dr Deacon said. Interesting facts from their research include herd interactions by individuals towards each other, bulls versus bulls, and cows versus calves. In the documentary, the viewer can also learn how giraffes use thermoregulation, their tongues, and roaming areas and distances; peculiar behaviour such as feeding on bones and soil; bulls fighting; how and when giraffes drink water; and the conservation and management of giraffes.
 
Focus is also placed on the manner in which the latest research plays a role in the better understanding of the animals.
 
According to Dr Deacon, this is the first documentary to focus on giraffe research on such a large scale. Marco Polo Films from Terra Mater are contracted by National Geographic to produce nature films – this was the hundredth nature film produced by them.
 
“There has never before been such a production about giraffes. It also attracted huge interest and reaction overseas, which will provide great exposure for our research and for the UFS.
 
“We believe that the media involvement will provide much more exposure to giraffes, which is a good thing, since they are facing extinction in Africa. The exposure can, in itself, lead to new research and has already started attracting international students to the UFS,” Dr Deacon said.
 
The second documentary will follow later this year. Iniosante, a film team from Texas, USA, is producing this film, which focuses on the extinction of giraffes. It is the same team responsible for the production Last of the Longnecks.



Additional resources:


-    Last of the Longnecks (trailer)
-    Giraffe – Up high and personal (National Geographic video)
-    Giraffe: African Giant (National Geographic video)
-    Giraffe – Up high and personal (article)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept