Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

UFS postdoctoral Fellow expands international opportunities for women in Science Communication
2016-12-13

Description: Mikateko Höppener Tags: Mikateko Höppener 

Mikateko Höppener, postdoctoral Fellow at the
Centre for Research on Higher Education and
Development (CRHED), University of the Free State (UFS),
who was selected as one of five South African women
to participate in the Best Practice in Science
Communication UK study tour.

“Often, the power lies in our own hands as individuals to take the initiative, be curious about opportunities to learn, develop an interest to make a positive contribution in society through our research, and make use of our networks within and outside of academia to effect positive change.”

This is according to Mikateko Höppener, a postdoctoral Fellow at the Centre for Research on Higher Education and Development (CRHED), at the University of the Free State (UFS), who was selected as one of five South African women to participate in the Best Practice in Science Communication UK study tour. This was part of the British Council and Academy of Science South Africa (ASSAf) women in science project.

Höppener said she saw this as an opportunity to expand opportunities for women in Science, Technology, Engineering and Mathematics (STEM). “The whole experience reinforced my conviction that there is a lot of untapped potential for young people to practise and enhance science communication in South Africa for the betterment of our communities,” she said.

During her visit to the UK, Höppener was exposed to an international networking platform of science communication practitioners and stakeholders such as the Director for Development of Vitae, departments at The Royal Society, science journalists at the BBC World Service, policy advisers and public engagement teams at the Welcome Trust, the Director of SciDev.net, and the Science Adviser for STEM Education and Public Engagement at the British Council.

Höppener said each of these meetings had highly interactive presentations and discussions with members of various organisations and the South African delegation. 

Being selected for the science communication fellowship and attending the study tour was not only personally and professionally rewarding for Höppener, it also enabled her to pass on what she had learnt to fellow emerging women researchers in South Africa.

Earlier this year, she hosted a WiSTEM (Women in Science, Technology, Engineering and Mathematics) Science Communication and Engagement Workshop at the UFS and through press releases and radio interviews, brought positive attention to the UFS to inspire young women across the country to get involved in science communication training.

“I intend to establish a science communication and engagement centre at the UFS where ongoing training, mentorship and support will be offered to young researchers to learn how to orient their knowledge and research to community development through science communication,” said Höppener.

The Best Practice in Science Communication UK study tour took place from 24 to 28 October 2016 as part of the Newton Fund Professional Development Programme South Africa.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept