Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 August 2025 | Story Martinette Brits | Photo Stephen Collett
Prof Elizabeth Erasmus
Prof Elizabeth Erasmus during her inaugural lecture, Molecules of Change: Chemistry for a Better Tomorrow, on 20 August, highlighting how innovative chemistry can turn waste into value and promote sustainable solutions.

With climate change, resource scarcity, and environmental pollution among the most pressing challenges of our time, Prof Elizabeth (Lizette) Erasmus used her inaugural lecture on Wednesday, 20 August to show how chemistry can provide powerful, practical answers. In her lecture, Molecules of Change: Chemistry for a Better Tomorrow, she traced her journey from fundamental research to pioneering innovations that turn waste into value, protect ecosystems, and improve food security.

During her talk, Prof Erasmus – Researcher in the Department of Chemistry – recalled a moment in 2018 that reshaped her career trajectory. While preparing a Sasol research grant on copper oxide nanoparticles, an entrepreneur assisting with the proposal posed a deceptively simple challenge: “So what?” “Although upsetting at first, those two words completely reshaped my outlook,” she explained. “They inspired my journey from purely academic chemistry towards more applied, impactful research – with the mission of not only advancing science, but of also improving society and the environment.”

 

From fundamental science to global solutions

Prof Erasmus began her career in organometallic chemistry, preparing and characterising complex molecules to understand their reactivity and physical properties. Later, her focus shifted to heterogeneous catalysis, where she explored nanomaterials and surface chemistry.

Her research has since evolved towards developing sustainable technologies that address urgent global challenges. One example is agricultural innovation: using green solvents to extract cellulose from wattle tree bark to create biodegradable superabsorbent polymers. “Unlike the polyacrylates in baby diapers, these SAPs degrade into nutrients for soil microbes and plants,” she explained. “By loading them with fertiliser, we develop slow-release, water-retaining materials that improve agricultural sustainability.”

Other projects include producing biochar to restore degraded soils, creating natural growth enhancers such as wood vinegar, and designing an ‘ultimate fertiliser’ that combines these products for long-term soil health. Her group also works on environmental remediation, developing hydrophobic sponges to absorb oil spills, repurposing building waste to clean polluted water, and using innovative chemistry to convert carbon dioxide into valuable products.

“We are even looking at one of the fastest-growing waste streams: e-waste,” Prof Erasmus noted. “With more gold per ton than natural ore, e-waste represents both a challenge and an opportunity. By developing porous absorbent materials, we can selectively capture and reduce gold ions directly to metallic gold – recovering a precious resource from waste.”

She concluded by crediting her team and collaborators: “This, however, is only the tip of the iceberg. The bulk of the work lies beneath the surface, carried out by dedicated students, collaborators, mentors, colleagues, friends, and family. I owe them my deepest gratitude, for they are the ones who truly sustain this journey of transforming chemistry into solutions for a better world.”

 

About Prof Erasmus

Prof Elizabeth (Lizette) Erasmus obtained all her degrees at the University of the Free State: a BSc (2001), BSc Honours in Chemistry (2002), MSc in Chemistry (2003), and a PhD in Chemistry (2005). She has published more than 80 research papers, holds an H-index of 21, and has extensive experience in supervising MSc and PhD students.

After serving as a senior researcher at the CSIR, she returned to academia at the UFS, where her international collaborations in the Netherlands and at UC Davis broadened her focus from organometallic chemistry to heterogeneous catalysis and nanochemistry. Her expertise spans organometallic chemistry, electrochemistry, surface characterisation, and nanomaterials.

News Archive

Department of Chemistry moves into world-class facilities
2008-05-16

 

Attending the opening of the first and second phases of the Department of Chemistry's upgraded research facilities on the Main Campus of the UFS in Bloemfontein are, from the left: Prof. André Roodt, Head of the department, Prof. Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS, and Ms Tania van Zyl, Architect from Goldblatt Yuill Architects in Bloemfontein.
Photo: Leonie Bolleurs

UFS Department of Chemistry moves into world-class facilities

The University of the Free State’s (UFS) Department of Chemistry recently moved into the first and second phases of the southern wing of the upgraded Moerdyk and annex building in which the department is situated. The wing is part an extensive project to upgrade the building and its facilities.

At a total costs of R40 million for the upgrading of the building and R30 million for the equipment, this is the biggest project of its kind in the history of the UFS.

The upgrading is taking place in four phases, of which the largest part is the southern wing. Researchers and undergraduate students recently moved into this part of the building, which consists of the first- and second-year laboratories. The laboratories consist of, among others, larger and safer venting and research-focused facilities as well as enough storage for the department’s equipment. Although one of the water-cooling systems on the roof of the building recently caught fire, all classes, practical and research work is going ahead without any disturbance.

“The putting into service of the first two phases is a milestone for the department. The project is almost half way and, when it is completed by the middle to end of 2009, we will boast with some of the best research and undergraduate laboratories in the country. It will also increase our leadership in advanced training on the continent and will strengthen the UFS’s role in the international chemistry arena,” says Prof. André Roodt, head of the department.

According to Prof. Roodt advanced research on fuel and nano particles (this is particles as big as one hundred thousandth of a human hair strand) will be conducted in the completed laboratories as part of the UFS’s research cluster initiative. Other research such as anti cancer remedies, research on various chemical processes and research on biological pharmacological remedies will also be done.

“During the past three years the department has made a significant impact on research in chemistry worldwide. Our academics are publishing in some of the world’s foremost chemistry journals and various presentations are made at international conferences. The upgraded facilities will ensure that we continue building on our high quality research and it will also ensure that our students can compete with the best in the world,” says Prof. Roodt.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
16 May 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept