Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 August 2025 | Story Lunga Luthuli | Photo André Damons
Prof Sethulego Matebesi
Prof Sethulego Matebesi, Chairperson of the University of the Free State Elections Logistics Committee for 2025 and Head of the Department of Sociology.

The 2025/2026 Campus Student Representative Council (CSRC) and Faculty Student Council (FSC) elections are officially underway at the University of the Free State (UFS), with nominations, which took place from 28 July to 1 August. The Elections Logistics Committee (ELC), chaired by Prof Sethulego Matebesi – also Head of the Department of Sociology – has implemented a robust framework to ensure that the process is transparent, fair, and inclusive.

Since the introduction of online voting in 2021, the UFS has been refining the system to increase accessibility, efficiency, and transparency. “Online voting has become a key part of our electoral process, offering students a convenient, secure, and transparent way to participate,” said Prof Matebesi. This year, the ELC also launched extended voter education campaigns, outlined clear procedural guidelines, and improved real-time monitoring mechanisms to build student trust and engagement.

Voting in the 2025/2026 CSRC and FSC elections will take place from 20 to 22 August 2025. Students are encouraged to use the online platform to cast their votes during this period.

At the heart of the elections is the principle of a ‘free and fair’ process. “At the UFS, this means creating an environment where all candidates have equal access to resources and platforms, and students can vote without fear or intimidation,” Prof Matebesi explained. The ELC is committed to ensuring that every student voice is heard – especially those of first-year students and others not affiliated with political structures.

Past challenges, such as low voter turnout, misinformation, and disruptive conduct during manifesto presentations, have informed this year’s strategy. “To address these issues, we have enhanced engagement through social media, webinars, and SMS reminders. I am impressed with how students and their leadership have embraced the feedback mechanisms we have introduced,” said Prof Matebesi.

Candidates and campaign teams are expected to uphold a strict code of conduct aligned with the Constitution of the Institutional Student Representative Council (ISRC). Enforcement measures range from warnings to disqualification in cases of misconduct. “Instilling respect and good conduct have a lasting impact. It is essential that candidates appreciate the responsibility that comes with contesting in these elections,” he added.

Now that the nomination phase has closed, Prof Matebesi encourages students to actively participate in the next phases. “Vote, engage with candidates, and promote respectful dialogue. Your participation strengthens student democracy and shapes the future of our governance structures. Together, we can create an election process that reflects integrity, diversity, and shared purpose.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept