Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 August 2025 | Story Martinette Brits | Photo Barend Nagel
Dr Rouxan Fouche
Dr Rouxan Fouché, Lecturer in the Department of Computer Science and Informatics at the University of the Free State, whose award-winning research explores the impact of language in multilingual computer science education.

Dr Rouxan Fouché, Lecturer in the Department of Computer Science and Informatics at the University of the Free State (UFS), earned national recognition when he received both the Best Informatics Paper and the Overall Best Paper awards at the 54th Annual Conference of the Southern African Computer Lecturers’ Association (SACLA 2025). Held in Bloemfontein from 30 July to 1 August, the conference brought together leading voices in computer science education from across the region. Dr Fouché’s award-winning paper, Beyond Language Barriers: Programme-Specific Effects of English Medium Instruction in South African Computer Science Education, explores the nuanced impact of language on student learning in multilingual computer science classrooms.

“It was incredibly humbling and exciting to receive this recognition,” said Dr Fouché. “When they announced the Best Informatics Paper Award, I was already thrilled, but when they called my name again for the Overall Best Paper Award, I was genuinely shocked.”

The paper, which investigates how English-medium instruction affects students differently across different types of modules, stood out for its relevance to both educational policy and classroom practice in multilingual contexts. “As a researcher, you hope your work will make an impact,” Dr Fouché reflected, “but to have it recognised at this level by peers across the computer science and informatics community in Southern Africa was beyond my expectations.”

Representing the UFS at SACLA added another layer of significance. “Our university has such a rich tradition in computer science and informatics education,” said Dr Fouché. “The Free State context, with our incredibly diverse student population representing all 11 official languages, provides a unique lens for understanding multilingual education. I was proud to show how the UFS is leading research into practical solutions for South African higher education challenges.”

 

Rethinking language barriers in STEM education

The award-winning study stemmed from a broader investigation into student attrition in computer science. “Language barriers represent just one component of the various factors I'm studying that affect student success and retention,” explained Dr Fouché. “Like many educators in South Africa, I knew that a very low percentage of our Department of Computer Science and Informatics students are native English speakers, yet we teach everything in English.”

What the research uncovered was unexpected. “Students with language difficulties weren't struggling uniformly across all modules as we might expect,” Dr Fouché said. “Instead, there were dramatic differences depending on the type of content.” In particular, programming modules seemed to pose very little additional difficulty for students with language barriers, while business-related modules presented significant challenges.

“The most significant finding was that programming education appears to naturally transcend language barriers,” said Dr Fouché. “We found negligible differences in perceived difficulty between students with and without language difficulties in core programming modules – effect sizes of just 0.017 to 0.041, which is essentially no difference.” Surprisingly, students with language difficulties actually found mathematics and physics modules easier than their English-proficient peers, while business modules showed the opposite trend.

“These findings suggest that instead of treating all technical subjects the same, we need programme-specific support strategies,” he said. “Computer science education might offer a more equitable pathway to technical careers for our multilingual student population.”

Dr Fouché hopes the findings will inform more tailored teaching approaches: “We should emphasise visual representations, multiple symbolic systems, and hands-on applications that play to students' compensatory strengths for mathematics and physics. We need targeted interventions for business-related modules and additional support for the dual cognitive load of processing both technical and business terminology simultaneously.”

 

A research journey driven by equity

Dr Fouché’s academic journey spans human-computer interaction, digital inclusion, and educational equity. His doctoral work used a community-based action research approach to address the digital divide in marginalised communities. “The connection between these areas is really about equity and access,” he said. “Whether it's digital inclusion in marginalised communities or language barriers in technical education, I'm interested in understanding and addressing the systemic factors that prevent people from fully participating in our increasingly digital world.”

He credits mentors such as Prof Tanya Stott and Prof Liezel Nel for shaping his research path, and values collaboration with colleagues such as Dr Wynand Nel and Dr Pakiso Khomokhoana, among others. His advice to emerging researchers? “Embrace the South African context as a strength, not a limitation. Our linguistic diversity, postcolonial educational legacy, and unique challenges aren’t obstacles to overcome, but valuable perspectives that can contribute to global knowledge.”

Dr Fouché is now planning a longitudinal study to track students over time and explore how early advantages or disadvantages related to language shape long-term academic and career outcomes. His work continues to position the UFS as a leader in evidence-based, inclusive computer science education.

Hand Read the paper: Beyond Language Barriers

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept