Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 August 2025 | Story Martinette Brits | Photo Barend Nagel
Dr Rouxan Fouche
Dr Rouxan Fouché, Lecturer in the Department of Computer Science and Informatics at the University of the Free State, whose award-winning research explores the impact of language in multilingual computer science education.

Dr Rouxan Fouché, Lecturer in the Department of Computer Science and Informatics at the University of the Free State (UFS), earned national recognition when he received both the Best Informatics Paper and the Overall Best Paper awards at the 54th Annual Conference of the Southern African Computer Lecturers’ Association (SACLA 2025). Held in Bloemfontein from 30 July to 1 August, the conference brought together leading voices in computer science education from across the region. Dr Fouché’s award-winning paper, Beyond Language Barriers: Programme-Specific Effects of English Medium Instruction in South African Computer Science Education, explores the nuanced impact of language on student learning in multilingual computer science classrooms.

“It was incredibly humbling and exciting to receive this recognition,” said Dr Fouché. “When they announced the Best Informatics Paper Award, I was already thrilled, but when they called my name again for the Overall Best Paper Award, I was genuinely shocked.”

The paper, which investigates how English-medium instruction affects students differently across different types of modules, stood out for its relevance to both educational policy and classroom practice in multilingual contexts. “As a researcher, you hope your work will make an impact,” Dr Fouché reflected, “but to have it recognised at this level by peers across the computer science and informatics community in Southern Africa was beyond my expectations.”

Representing the UFS at SACLA added another layer of significance. “Our university has such a rich tradition in computer science and informatics education,” said Dr Fouché. “The Free State context, with our incredibly diverse student population representing all 11 official languages, provides a unique lens for understanding multilingual education. I was proud to show how the UFS is leading research into practical solutions for South African higher education challenges.”

 

Rethinking language barriers in STEM education

The award-winning study stemmed from a broader investigation into student attrition in computer science. “Language barriers represent just one component of the various factors I'm studying that affect student success and retention,” explained Dr Fouché. “Like many educators in South Africa, I knew that a very low percentage of our Department of Computer Science and Informatics students are native English speakers, yet we teach everything in English.”

What the research uncovered was unexpected. “Students with language difficulties weren't struggling uniformly across all modules as we might expect,” Dr Fouché said. “Instead, there were dramatic differences depending on the type of content.” In particular, programming modules seemed to pose very little additional difficulty for students with language barriers, while business-related modules presented significant challenges.

“The most significant finding was that programming education appears to naturally transcend language barriers,” said Dr Fouché. “We found negligible differences in perceived difficulty between students with and without language difficulties in core programming modules – effect sizes of just 0.017 to 0.041, which is essentially no difference.” Surprisingly, students with language difficulties actually found mathematics and physics modules easier than their English-proficient peers, while business modules showed the opposite trend.

“These findings suggest that instead of treating all technical subjects the same, we need programme-specific support strategies,” he said. “Computer science education might offer a more equitable pathway to technical careers for our multilingual student population.”

Dr Fouché hopes the findings will inform more tailored teaching approaches: “We should emphasise visual representations, multiple symbolic systems, and hands-on applications that play to students' compensatory strengths for mathematics and physics. We need targeted interventions for business-related modules and additional support for the dual cognitive load of processing both technical and business terminology simultaneously.”

 

A research journey driven by equity

Dr Fouché’s academic journey spans human-computer interaction, digital inclusion, and educational equity. His doctoral work used a community-based action research approach to address the digital divide in marginalised communities. “The connection between these areas is really about equity and access,” he said. “Whether it's digital inclusion in marginalised communities or language barriers in technical education, I'm interested in understanding and addressing the systemic factors that prevent people from fully participating in our increasingly digital world.”

He credits mentors such as Prof Tanya Stott and Prof Liezel Nel for shaping his research path, and values collaboration with colleagues such as Dr Wynand Nel and Dr Pakiso Khomokhoana, among others. His advice to emerging researchers? “Embrace the South African context as a strength, not a limitation. Our linguistic diversity, postcolonial educational legacy, and unique challenges aren’t obstacles to overcome, but valuable perspectives that can contribute to global knowledge.”

Dr Fouché is now planning a longitudinal study to track students over time and explore how early advantages or disadvantages related to language shape long-term academic and career outcomes. His work continues to position the UFS as a leader in evidence-based, inclusive computer science education.

Hand Read the paper: Beyond Language Barriers

News Archive

Project aims to boost science pass rate
2009-01-19

 
Attending the launch of the HP grant of about R1 million to the UFS are, from the left: Mr Leon Erasmus, Country Manager for HP Technology Services in South Africa, Prof. Teuns Verschoor, Acting Rector of the UFS, and Mr Cobus van Breda, researcher at the UFS's Centre for Education Development and manager of the project.
Photo: Lacea Loader
The University of the Free State (UFS), in partnership with computer giant Hewlett Packard (HP), wants to boost the pass rate of its science students by using mobile technology.

The UFS is one of only 15 universities across Europe, the Middle East and Africa and the only university in South Africa to receive a grant from HP to promote mobile technology for teaching in higher education valued at USD$ 100,000 (or about R1 million). Altogether 80 universities from 28 countries applied for the grant.

“Last year HP invited a number of selected universities to submit proposals in which they had to explain how they are going to utilise mobile technologies in the redesign of a course that is presented at the university. The proposal of the Centre for Education Development (CED) at the UFS entitled “Understanding Physics through data logging” was accepted,” says Mr Cobus van Breda, researcher at CED and manager of the project.

According to Mr van Breda, students who do not meet the entrance requirements for the three-year B.Sc. programme have to enroll for the four-year curriculum with the first year actually preparing them for the three-year curriculum.

In order to increase the success rate of these students, the project envisages to enhance their understanding of science principles by utilising the advantages of personal computer (PC) tablet technology and other information and communication technologies (ICT) to support effective teaching and learning methodology.

“By using PC tablet technology in collaboration with data-logging software, a personal response system, the internet and other interactive ICT applications, an environment different from a traditional teaching milieu is created. This will consequently result in a different approach to addressing students’ learning issues,” says Mr van Breda.

The pilot project was launched during the fourth term of 2008 when 130 first-year B.Sc. students (of the four-year curriculum) did the practical component of the physics section of the Concepts in General Science (CGS) module by conducting experiments in a computerised laboratory, using data-logging software amongst other technology applications. “The pilot project delivered good results and students found the interactive application very helpful,” says Mr van Breda.

”The unique feature of the latter is the fact that real-life data can be collected with electronic sensors and instantly presented as computer graphs. It can then be analysed and interpreted immediately, thus more time can be devoted to actual Science principles and phenomena and less time on time-consuming data processing,” says Mr van Breda.

The CGS module can be seen as a prerequisite for further studies in physics at university level and in this regard it is of essence to keep looking for new models of learning and teaching which can result in student success. This year the theoretical and practical component of the physics section of the CGS programme will be done in an integrated manner.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
16 January 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept