Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 August 2025 | Story Martinette Brits | Photo Barend Nagel
Dr Rouxan Fouche
Dr Rouxan Fouché, Lecturer in the Department of Computer Science and Informatics at the University of the Free State, whose award-winning research explores the impact of language in multilingual computer science education.

Dr Rouxan Fouché, Lecturer in the Department of Computer Science and Informatics at the University of the Free State (UFS), earned national recognition when he received both the Best Informatics Paper and the Overall Best Paper awards at the 54th Annual Conference of the Southern African Computer Lecturers’ Association (SACLA 2025). Held in Bloemfontein from 30 July to 1 August, the conference brought together leading voices in computer science education from across the region. Dr Fouché’s award-winning paper, Beyond Language Barriers: Programme-Specific Effects of English Medium Instruction in South African Computer Science Education, explores the nuanced impact of language on student learning in multilingual computer science classrooms.

“It was incredibly humbling and exciting to receive this recognition,” said Dr Fouché. “When they announced the Best Informatics Paper Award, I was already thrilled, but when they called my name again for the Overall Best Paper Award, I was genuinely shocked.”

The paper, which investigates how English-medium instruction affects students differently across different types of modules, stood out for its relevance to both educational policy and classroom practice in multilingual contexts. “As a researcher, you hope your work will make an impact,” Dr Fouché reflected, “but to have it recognised at this level by peers across the computer science and informatics community in Southern Africa was beyond my expectations.”

Representing the UFS at SACLA added another layer of significance. “Our university has such a rich tradition in computer science and informatics education,” said Dr Fouché. “The Free State context, with our incredibly diverse student population representing all 11 official languages, provides a unique lens for understanding multilingual education. I was proud to show how the UFS is leading research into practical solutions for South African higher education challenges.”

 

Rethinking language barriers in STEM education

The award-winning study stemmed from a broader investigation into student attrition in computer science. “Language barriers represent just one component of the various factors I'm studying that affect student success and retention,” explained Dr Fouché. “Like many educators in South Africa, I knew that a very low percentage of our Department of Computer Science and Informatics students are native English speakers, yet we teach everything in English.”

What the research uncovered was unexpected. “Students with language difficulties weren't struggling uniformly across all modules as we might expect,” Dr Fouché said. “Instead, there were dramatic differences depending on the type of content.” In particular, programming modules seemed to pose very little additional difficulty for students with language barriers, while business-related modules presented significant challenges.

“The most significant finding was that programming education appears to naturally transcend language barriers,” said Dr Fouché. “We found negligible differences in perceived difficulty between students with and without language difficulties in core programming modules – effect sizes of just 0.017 to 0.041, which is essentially no difference.” Surprisingly, students with language difficulties actually found mathematics and physics modules easier than their English-proficient peers, while business modules showed the opposite trend.

“These findings suggest that instead of treating all technical subjects the same, we need programme-specific support strategies,” he said. “Computer science education might offer a more equitable pathway to technical careers for our multilingual student population.”

Dr Fouché hopes the findings will inform more tailored teaching approaches: “We should emphasise visual representations, multiple symbolic systems, and hands-on applications that play to students' compensatory strengths for mathematics and physics. We need targeted interventions for business-related modules and additional support for the dual cognitive load of processing both technical and business terminology simultaneously.”

 

A research journey driven by equity

Dr Fouché’s academic journey spans human-computer interaction, digital inclusion, and educational equity. His doctoral work used a community-based action research approach to address the digital divide in marginalised communities. “The connection between these areas is really about equity and access,” he said. “Whether it's digital inclusion in marginalised communities or language barriers in technical education, I'm interested in understanding and addressing the systemic factors that prevent people from fully participating in our increasingly digital world.”

He credits mentors such as Prof Tanya Stott and Prof Liezel Nel for shaping his research path, and values collaboration with colleagues such as Dr Wynand Nel and Dr Pakiso Khomokhoana, among others. His advice to emerging researchers? “Embrace the South African context as a strength, not a limitation. Our linguistic diversity, postcolonial educational legacy, and unique challenges aren’t obstacles to overcome, but valuable perspectives that can contribute to global knowledge.”

Dr Fouché is now planning a longitudinal study to track students over time and explore how early advantages or disadvantages related to language shape long-term academic and career outcomes. His work continues to position the UFS as a leader in evidence-based, inclusive computer science education.

Hand Read the paper: Beyond Language Barriers

News Archive

Student excels at international level with research in Inorganic Chemistry
2015-09-21


Carla Pretorius is currently conducting research in
Inorganic Chemistry at the St Petersburg University,
Russia.

Photo:Supplied

Carla Pretorius completed her PhD in Inorganic Chemistry recently, with a thesis entitled “Structural and Reactivity Study of Rhodium(I) Carbonyl Complexes as Model Nano Assemblies”, and has just received her results. The assessors were very impressed, and she will graduate at the next UFS Summer Graduation in December 2015.

She is currently conducting research in St Petersburg, Russia, by invitation. She is working in the group of Prof Vadim Kukushkin of the St Petersburg University, under a bilateral collaboration agreement between the groups of Prof Kukuskin (SPBU) and Prof André Roodt (Head of the Department of Chemistry at the UFS).

Her research involves the intermetallic rhodium-rhodium interactions for the formation of nano-wires and -plates, with applications in the micro-electronics industry, and potentially for harvesting sun energy. She was one of only three young South African scientists invited to attend the workshop “Hot Topics in Contemporary Crystallography” in Split in Croatia during 2014. More recently, she received the prize for best student poster presentation at the international symposium, Indaba 8 in Skukuza in the Kruger National Park, which was judged by an international panel.

Carla was also one of the few international PhD students invited to present a lecture at the 29th European Crystallographic Meeting (ECM29) in Rovinj, Croatia (23-28 August 2015; more than 1 000 delegates from 51 countries). As a result of this lecture, she has just received an invitation to start a collaborative project with a Polish research group at the European Synchrotron Research Facility (ESRF) in Grenoble, France.

According to Prof Roodt, the ESRF ID09B beam line is the only one of its kind in Europe designed for time-resolved Laue diffraction experiments. It has a time-resolution of up to one tenth of a nanosecond, after activation by a laser pulse 100 times shorter (one tenth of a nanosecond when compared to one second is the equivalent of one second compared to 300 years). The results from these experiments will broaden the knowledge on light-induced transformations of very short processes; for example, as in photochemical reactions associated with sun energy harvesting, and will assist in the development of better materials to capture these.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept