Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 August 2025 | Story Martinette Brits | Photo Barend Nagel
Dr Rouxan Fouche
Dr Rouxan Fouché, Lecturer in the Department of Computer Science and Informatics at the University of the Free State, whose award-winning research explores the impact of language in multilingual computer science education.

Dr Rouxan Fouché, Lecturer in the Department of Computer Science and Informatics at the University of the Free State (UFS), earned national recognition when he received both the Best Informatics Paper and the Overall Best Paper awards at the 54th Annual Conference of the Southern African Computer Lecturers’ Association (SACLA 2025). Held in Bloemfontein from 30 July to 1 August, the conference brought together leading voices in computer science education from across the region. Dr Fouché’s award-winning paper, Beyond Language Barriers: Programme-Specific Effects of English Medium Instruction in South African Computer Science Education, explores the nuanced impact of language on student learning in multilingual computer science classrooms.

“It was incredibly humbling and exciting to receive this recognition,” said Dr Fouché. “When they announced the Best Informatics Paper Award, I was already thrilled, but when they called my name again for the Overall Best Paper Award, I was genuinely shocked.”

The paper, which investigates how English-medium instruction affects students differently across different types of modules, stood out for its relevance to both educational policy and classroom practice in multilingual contexts. “As a researcher, you hope your work will make an impact,” Dr Fouché reflected, “but to have it recognised at this level by peers across the computer science and informatics community in Southern Africa was beyond my expectations.”

Representing the UFS at SACLA added another layer of significance. “Our university has such a rich tradition in computer science and informatics education,” said Dr Fouché. “The Free State context, with our incredibly diverse student population representing all 11 official languages, provides a unique lens for understanding multilingual education. I was proud to show how the UFS is leading research into practical solutions for South African higher education challenges.”

 

Rethinking language barriers in STEM education

The award-winning study stemmed from a broader investigation into student attrition in computer science. “Language barriers represent just one component of the various factors I'm studying that affect student success and retention,” explained Dr Fouché. “Like many educators in South Africa, I knew that a very low percentage of our Department of Computer Science and Informatics students are native English speakers, yet we teach everything in English.”

What the research uncovered was unexpected. “Students with language difficulties weren't struggling uniformly across all modules as we might expect,” Dr Fouché said. “Instead, there were dramatic differences depending on the type of content.” In particular, programming modules seemed to pose very little additional difficulty for students with language barriers, while business-related modules presented significant challenges.

“The most significant finding was that programming education appears to naturally transcend language barriers,” said Dr Fouché. “We found negligible differences in perceived difficulty between students with and without language difficulties in core programming modules – effect sizes of just 0.017 to 0.041, which is essentially no difference.” Surprisingly, students with language difficulties actually found mathematics and physics modules easier than their English-proficient peers, while business modules showed the opposite trend.

“These findings suggest that instead of treating all technical subjects the same, we need programme-specific support strategies,” he said. “Computer science education might offer a more equitable pathway to technical careers for our multilingual student population.”

Dr Fouché hopes the findings will inform more tailored teaching approaches: “We should emphasise visual representations, multiple symbolic systems, and hands-on applications that play to students' compensatory strengths for mathematics and physics. We need targeted interventions for business-related modules and additional support for the dual cognitive load of processing both technical and business terminology simultaneously.”

 

A research journey driven by equity

Dr Fouché’s academic journey spans human-computer interaction, digital inclusion, and educational equity. His doctoral work used a community-based action research approach to address the digital divide in marginalised communities. “The connection between these areas is really about equity and access,” he said. “Whether it's digital inclusion in marginalised communities or language barriers in technical education, I'm interested in understanding and addressing the systemic factors that prevent people from fully participating in our increasingly digital world.”

He credits mentors such as Prof Tanya Stott and Prof Liezel Nel for shaping his research path, and values collaboration with colleagues such as Dr Wynand Nel and Dr Pakiso Khomokhoana, among others. His advice to emerging researchers? “Embrace the South African context as a strength, not a limitation. Our linguistic diversity, postcolonial educational legacy, and unique challenges aren’t obstacles to overcome, but valuable perspectives that can contribute to global knowledge.”

Dr Fouché is now planning a longitudinal study to track students over time and explore how early advantages or disadvantages related to language shape long-term academic and career outcomes. His work continues to position the UFS as a leader in evidence-based, inclusive computer science education.

Hand Read the paper: Beyond Language Barriers

News Archive

UFS research could light up South African homes
2016-01-21

Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology, is using her research to provide solutions to the energy crises in South Africa.

A young researcher at the university is searching for the solution to South Africa’s energy and electricity problems from a rather unlikely source: cow dung.

“Cow dung could help us power South Africa,” explains Reitumetse Maloa, postgraduate student and researcher at the UFS Department of Microbial, Biochemical and Food Biotechnology.

Reitumetse’s research is trying to understand how the bacteria works that is responsible for producing biogas.

“Biogas can be used for cooking, heating, lighting and powering generators and turbines to make electricity. The remaining liquid effluent can fertilise crops, as it is high in nitrogen, phosphorus and potassium.”

By using cow dung and food waste to produce biogas, we will be able to lower greenhouse gases.

Biogas is produced in a digester - an oxygen-free space in which bacteria break down or digest organic material fed into the system. This process naturally produces biogas, which is mainly a mixture of methane and carbon dioxide.

“Many countries, such as Germany and the United States, have begun generating electricity from cow dung and food waste, through a process known as biogas production. In South Africa, a number of industries, including waste-water treatment facilities and farms, have caught on to this technology, using it to generate heat and to power machines.”

Until recently the world has relied heavily on electricity derived from fossil fuels such as coal, natural gas and oil. Once these fuels have been extracted from underground reservoirs, they are treated or cleaned, transported to power plants and transformed into the electricity that will reach your house. Fossil fuels are considered a ‘dirty’ energy source which gives off greenhouse gases when burned. Those gases are the major contributing factor to climate change.

“We know very little about the interaction of the bacteria inside the biogas digester. To use biogas as a sustainable fuel source, we need to understand and describe the bacteria population and growth dynamics inside the digester to produce biogas optimally. Currently we are testing a variety of feedstock, including bran, maize and molasses, for biogas production potential, as well as optimising the conditions leading to maximum biogas production. We are also exploring the potential to use the effluent as fertiliser on local farms. The ultimate goal is to have biogas systems that will supply our university with clean energy.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept