Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 August 2025 | Story Martinette Brits | Photo Barend Nagel
Dr Rouxan Fouche
Dr Rouxan Fouché, Lecturer in the Department of Computer Science and Informatics at the University of the Free State, whose award-winning research explores the impact of language in multilingual computer science education.

Dr Rouxan Fouché, Lecturer in the Department of Computer Science and Informatics at the University of the Free State (UFS), earned national recognition when he received both the Best Informatics Paper and the Overall Best Paper awards at the 54th Annual Conference of the Southern African Computer Lecturers’ Association (SACLA 2025). Held in Bloemfontein from 30 July to 1 August, the conference brought together leading voices in computer science education from across the region. Dr Fouché’s award-winning paper, Beyond Language Barriers: Programme-Specific Effects of English Medium Instruction in South African Computer Science Education, explores the nuanced impact of language on student learning in multilingual computer science classrooms.

“It was incredibly humbling and exciting to receive this recognition,” said Dr Fouché. “When they announced the Best Informatics Paper Award, I was already thrilled, but when they called my name again for the Overall Best Paper Award, I was genuinely shocked.”

The paper, which investigates how English-medium instruction affects students differently across different types of modules, stood out for its relevance to both educational policy and classroom practice in multilingual contexts. “As a researcher, you hope your work will make an impact,” Dr Fouché reflected, “but to have it recognised at this level by peers across the computer science and informatics community in Southern Africa was beyond my expectations.”

Representing the UFS at SACLA added another layer of significance. “Our university has such a rich tradition in computer science and informatics education,” said Dr Fouché. “The Free State context, with our incredibly diverse student population representing all 11 official languages, provides a unique lens for understanding multilingual education. I was proud to show how the UFS is leading research into practical solutions for South African higher education challenges.”

 

Rethinking language barriers in STEM education

The award-winning study stemmed from a broader investigation into student attrition in computer science. “Language barriers represent just one component of the various factors I'm studying that affect student success and retention,” explained Dr Fouché. “Like many educators in South Africa, I knew that a very low percentage of our Department of Computer Science and Informatics students are native English speakers, yet we teach everything in English.”

What the research uncovered was unexpected. “Students with language difficulties weren't struggling uniformly across all modules as we might expect,” Dr Fouché said. “Instead, there were dramatic differences depending on the type of content.” In particular, programming modules seemed to pose very little additional difficulty for students with language barriers, while business-related modules presented significant challenges.

“The most significant finding was that programming education appears to naturally transcend language barriers,” said Dr Fouché. “We found negligible differences in perceived difficulty between students with and without language difficulties in core programming modules – effect sizes of just 0.017 to 0.041, which is essentially no difference.” Surprisingly, students with language difficulties actually found mathematics and physics modules easier than their English-proficient peers, while business modules showed the opposite trend.

“These findings suggest that instead of treating all technical subjects the same, we need programme-specific support strategies,” he said. “Computer science education might offer a more equitable pathway to technical careers for our multilingual student population.”

Dr Fouché hopes the findings will inform more tailored teaching approaches: “We should emphasise visual representations, multiple symbolic systems, and hands-on applications that play to students' compensatory strengths for mathematics and physics. We need targeted interventions for business-related modules and additional support for the dual cognitive load of processing both technical and business terminology simultaneously.”

 

A research journey driven by equity

Dr Fouché’s academic journey spans human-computer interaction, digital inclusion, and educational equity. His doctoral work used a community-based action research approach to address the digital divide in marginalised communities. “The connection between these areas is really about equity and access,” he said. “Whether it's digital inclusion in marginalised communities or language barriers in technical education, I'm interested in understanding and addressing the systemic factors that prevent people from fully participating in our increasingly digital world.”

He credits mentors such as Prof Tanya Stott and Prof Liezel Nel for shaping his research path, and values collaboration with colleagues such as Dr Wynand Nel and Dr Pakiso Khomokhoana, among others. His advice to emerging researchers? “Embrace the South African context as a strength, not a limitation. Our linguistic diversity, postcolonial educational legacy, and unique challenges aren’t obstacles to overcome, but valuable perspectives that can contribute to global knowledge.”

Dr Fouché is now planning a longitudinal study to track students over time and explore how early advantages or disadvantages related to language shape long-term academic and career outcomes. His work continues to position the UFS as a leader in evidence-based, inclusive computer science education.

Hand Read the paper: Beyond Language Barriers

News Archive

Names are not enough: a molecular-based information system is the answer
2016-06-03

Description: Department of Plant Sciences staff Tags: Department of Plant Sciences staff

Prof Wijnand Swart (left) from the Department of
Plant Sciences at the UFS and Prof Pedro Crous
from the Centraalbureau voor Schimmelcultures (CBS),
in the Netherlands.
Photo: Leonie Bolleurs

South Africa is the second-largest exporter of citrus in the world, producing 60% of all citrus grown in the Southern Hemisphere. It exports more than 70 % of its citrus crop to the European Union and USA. Not being able to manage fungal pathogens effectively can have a serious impact on the global trade in not only citrus but also other food and fibre crops, such as bananas, coffee, and cacao.

The Department of Plant Sciences at the University of the Free State (UFS) hosted a public lecture by Prof Pedro W. Crous entitled “Fungal Pathogens Impact Trade in Food and Fibre: The Need to Move Beyond Linnaeus” on the Bloemfontein Campus.

Prof Crous is Director of the world’s largest fungal Biological Resource Centre, the Centraalbureau voor Schimmelcultures (CBS), in the Netherlands. He is also one of the top mycologists in the world.

Since the topic of his lecture was very pertinent to food security and food safety worldwide, it was co-hosted by the Collaborative Consortium for Broadening the Food Base, a multi-institutional research programme managed by Prof Wijnand Swart in the Department of Plant Sciences.

Reconsider the manner in which pathogens are identified

Prof Crous stressed that, because international trade in products from agricultural crops will expand, the introduction of fungal pathogens to new regions will increase. “There is therefore an urgent need to reconsider the manner in which these pathogens are identified and treated,” he said.

According to Prof Crous, the older Linnaean system for naming living organisms cannot deal with future trade-related challenges involving pests and pathogens. A system, able to identify fungi based on their DNA and genetic coding, will equip scientists with the knowledge to know what they are dealing with, and whether it is a friendly or harmful fungus.

Description: The fungus, Botrytis cinerea Tags: The fungus, Botrytis cinerea

The fungus, Botrytis cinerea, cause of grey mould
disease in many fruit crops.
Photo: Prof Wijnand Swart

Embrace the molecular-based information system

Prof Crous said that, as a consequence, scientists must embrace new technologies, such as the molecular-based information system for fungi, in order to provide the required knowledge.

He presented this very exciting system which will govern the manner in which fungal pathogens linked to world trade are described. This system ensures that people from different countries will know with which pathogen they are dealing. Further, it will assist with the management of pathogens, ensuring that harmful pathogens do not spread from one country to another.

More about Prof Pedro Crous


Prof Crous is an Affiliated Professor at six international universities, including the UFS, where he is associated with the Department of Plant Sciences. He has initiated several major activities to facilitate global research on fungal biodiversity, and has published more than 600 scientific papers, many in high impact journals, and authored or edited more than 20 books.

 

 

Biography Prof Pedro Crous
Philosophical Transactions of the Royal Society B


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept