Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 August 2025 | Story Teboho Mositi | Photo Teboho Mositi
Basotho New Year
Mary Mansele (far left with orange blanket), Lecturer in the Department of African Languages, and Dr Mabohlokoa Khanyetsi (far right with green blanket), Subject Head in the department, with attendees during the Basotho New Year celebrations held at the Basotho Cultural Village.

The Department of African Languages, in collaboration with the Bosotho Matjhabeng Association on the University of the Free State (UFS) Qwaqwa Campus, celebrated the Basotho New Year vibrantly at the Basotho Cultural Village on 1 August 2025. The event was hosted in partnership with the Free State Department of Sport, Arts and Culture and included participation from various stakeholders committed to preserving and promoting the Basotho heritage.

The Basotho New Year is traditionally celebrated on 1 August, marking an important seasonal transition in the Basotho calendar in August, as it signifies the end of the dry winter season (Mariha) and the beginning of a new agricultural cycle. This period is associated with renewal, growth, and preparation for planting. In line with long-standing customs, the first crops are symbolically offered to God in a sacred ritual (Tlatlamatjholo), expressing gratitude and seeking blessings for a successful harvest season. This year’s celebration centred on the theme of the eight stars (dinaledi) – a vital aspect of Basotho cosmology and identity. Students had the opportunity to gain exposure, deepen their knowledge, and learn about the cultural and historical significance of the different stars and their importance to the Basotho nation. Through traditional performances, storytelling, and educational engagement, the event successfully blended cultural celebration with learning, reinforcing the need to preserve indigenous knowledge for future generations.

 

Honouring the history of the Basotho

The Basotho New Year is a culturally significant day that celebrates the identity, history, and traditions of the Basotho people. According to Dr Mabohlokoa Khanyetsi, Senior Lecturer in the Department of African Languages, the day serves as a reminder of the importance of cultural knowledge in shaping the future. “A nation that does not know itself will struggle to determine its future,” she said. The New Year is celebrated through various cultural practices, including traditional clothing, food, games, and the sharing of oral history. Dr Khanyetsi explained that historical knowledge is not only valuable for preserving identity, but also for learning from the past to make informed decisions moving forward. She highlighted the traditional use of stars (dinaledi) by the Basotho to guide agricultural activities. The appearance of specific stars signalled the right time to begin ploughing, helping communities prepare for a season of abundance. Crops such as sorghum bicolor played a central role, as they were used to produce staple foods such as porridge, bread, and traditional beer. Dr Khanyetsi also underlines the value of cultural customs and rites of passage, which once marked a bridge to transition from childhood to adulthood. These practices, she argues, helped individuals remain connected to their environment and community. “I have deep respect for those who continue such traditions, as they keep us grounded in who we are as a people,” she concluded.

The founder of the Bosotho Matjhabeng Association, Rethabile Mothabeng, said: “It was truly an eye-opener to engage with researchers and learn how the stars are not just beautiful to look at, but deeply connected to the Basotho calendar, especially when it comes to planting and predicting the weather. What made it even more special was how our team brought that knowledge to life through poetry. It wasn’t just learning, it was a creative journey that we shared together.”

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept