Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 August 2025 | Story Teboho Mositi | Photo Teboho Mositi
Basotho New Year
Mary Mansele (far left with orange blanket), Lecturer in the Department of African Languages, and Dr Mabohlokoa Khanyetsi (far right with green blanket), Subject Head in the department, with attendees during the Basotho New Year celebrations held at the Basotho Cultural Village.

The Department of African Languages, in collaboration with the Bosotho Matjhabeng Association on the University of the Free State (UFS) Qwaqwa Campus, celebrated the Basotho New Year vibrantly at the Basotho Cultural Village on 1 August 2025. The event was hosted in partnership with the Free State Department of Sport, Arts and Culture and included participation from various stakeholders committed to preserving and promoting the Basotho heritage.

The Basotho New Year is traditionally celebrated on 1 August, marking an important seasonal transition in the Basotho calendar in August, as it signifies the end of the dry winter season (Mariha) and the beginning of a new agricultural cycle. This period is associated with renewal, growth, and preparation for planting. In line with long-standing customs, the first crops are symbolically offered to God in a sacred ritual (Tlatlamatjholo), expressing gratitude and seeking blessings for a successful harvest season. This year’s celebration centred on the theme of the eight stars (dinaledi) – a vital aspect of Basotho cosmology and identity. Students had the opportunity to gain exposure, deepen their knowledge, and learn about the cultural and historical significance of the different stars and their importance to the Basotho nation. Through traditional performances, storytelling, and educational engagement, the event successfully blended cultural celebration with learning, reinforcing the need to preserve indigenous knowledge for future generations.

 

Honouring the history of the Basotho

The Basotho New Year is a culturally significant day that celebrates the identity, history, and traditions of the Basotho people. According to Dr Mabohlokoa Khanyetsi, Senior Lecturer in the Department of African Languages, the day serves as a reminder of the importance of cultural knowledge in shaping the future. “A nation that does not know itself will struggle to determine its future,” she said. The New Year is celebrated through various cultural practices, including traditional clothing, food, games, and the sharing of oral history. Dr Khanyetsi explained that historical knowledge is not only valuable for preserving identity, but also for learning from the past to make informed decisions moving forward. She highlighted the traditional use of stars (dinaledi) by the Basotho to guide agricultural activities. The appearance of specific stars signalled the right time to begin ploughing, helping communities prepare for a season of abundance. Crops such as sorghum bicolor played a central role, as they were used to produce staple foods such as porridge, bread, and traditional beer. Dr Khanyetsi also underlines the value of cultural customs and rites of passage, which once marked a bridge to transition from childhood to adulthood. These practices, she argues, helped individuals remain connected to their environment and community. “I have deep respect for those who continue such traditions, as they keep us grounded in who we are as a people,” she concluded.

The founder of the Bosotho Matjhabeng Association, Rethabile Mothabeng, said: “It was truly an eye-opener to engage with researchers and learn how the stars are not just beautiful to look at, but deeply connected to the Basotho calendar, especially when it comes to planting and predicting the weather. What made it even more special was how our team brought that knowledge to life through poetry. It wasn’t just learning, it was a creative journey that we shared together.”

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept