Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 August 2025 | Story Teboho Mositi | Photo Teboho Mositi
Basotho New Year
Mary Mansele (far left with orange blanket), Lecturer in the Department of African Languages, and Dr Mabohlokoa Khanyetsi (far right with green blanket), Subject Head in the department, with attendees during the Basotho New Year celebrations held at the Basotho Cultural Village.

The Department of African Languages, in collaboration with the Bosotho Matjhabeng Association on the University of the Free State (UFS) Qwaqwa Campus, celebrated the Basotho New Year vibrantly at the Basotho Cultural Village on 1 August 2025. The event was hosted in partnership with the Free State Department of Sport, Arts and Culture and included participation from various stakeholders committed to preserving and promoting the Basotho heritage.

The Basotho New Year is traditionally celebrated on 1 August, marking an important seasonal transition in the Basotho calendar in August, as it signifies the end of the dry winter season (Mariha) and the beginning of a new agricultural cycle. This period is associated with renewal, growth, and preparation for planting. In line with long-standing customs, the first crops are symbolically offered to God in a sacred ritual (Tlatlamatjholo), expressing gratitude and seeking blessings for a successful harvest season. This year’s celebration centred on the theme of the eight stars (dinaledi) – a vital aspect of Basotho cosmology and identity. Students had the opportunity to gain exposure, deepen their knowledge, and learn about the cultural and historical significance of the different stars and their importance to the Basotho nation. Through traditional performances, storytelling, and educational engagement, the event successfully blended cultural celebration with learning, reinforcing the need to preserve indigenous knowledge for future generations.

 

Honouring the history of the Basotho

The Basotho New Year is a culturally significant day that celebrates the identity, history, and traditions of the Basotho people. According to Dr Mabohlokoa Khanyetsi, Senior Lecturer in the Department of African Languages, the day serves as a reminder of the importance of cultural knowledge in shaping the future. “A nation that does not know itself will struggle to determine its future,” she said. The New Year is celebrated through various cultural practices, including traditional clothing, food, games, and the sharing of oral history. Dr Khanyetsi explained that historical knowledge is not only valuable for preserving identity, but also for learning from the past to make informed decisions moving forward. She highlighted the traditional use of stars (dinaledi) by the Basotho to guide agricultural activities. The appearance of specific stars signalled the right time to begin ploughing, helping communities prepare for a season of abundance. Crops such as sorghum bicolor played a central role, as they were used to produce staple foods such as porridge, bread, and traditional beer. Dr Khanyetsi also underlines the value of cultural customs and rites of passage, which once marked a bridge to transition from childhood to adulthood. These practices, she argues, helped individuals remain connected to their environment and community. “I have deep respect for those who continue such traditions, as they keep us grounded in who we are as a people,” she concluded.

The founder of the Bosotho Matjhabeng Association, Rethabile Mothabeng, said: “It was truly an eye-opener to engage with researchers and learn how the stars are not just beautiful to look at, but deeply connected to the Basotho calendar, especially when it comes to planting and predicting the weather. What made it even more special was how our team brought that knowledge to life through poetry. It wasn’t just learning, it was a creative journey that we shared together.”

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept