Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 August 2025 | Story André Damons | Photo André Damons
Prof Hanneke Brits
Prof Gert van Zyl, Dean for the Faculty of Health Sciences, Prof Hanneke Brits, a family medicine specialist at the Free State Department of Health, as well as the Department of Family Medicine at the University of the Free State (UFS), Prof Anthea Rhoda, Deputy Vice-Chancellor: Academic, and Prof Nicholas Pearce, Head of the School of Clinical Medicine before the inaugural lecture.

Universities have an obligation to ensure that their assessments are sound and defendable when they confer degrees for professional qualifications, such as in medicine. Can institutions confidently defend these results and what are the implications if they pass a student who is not competent?

These were some of the questions Prof Hanneke Brits, a family medicine specialist at the Free State Department of Health, as well as the Department of Family Medicine, at the University of the Free State (UFS), addressed during her inaugural lecture on Tuesday (12 August). The UFS, she concluded at the end of her lecture, titled To pass or not to pass: Can we confidently defend the outcome of our assessments? can defend its clinical assessments with the implementation of effective workplace-based assessment and trained examiners. 

 

The implications of passing incompetent students 

According to Prof Brits, who has supervised numerous undergraduate and postgraduate student research projects, she chose this topic because decisions have consequences. She gave an overview of the assessments in the clinical years of the undergraduate medical programme. In so doing, she also answered other questions including what may happen when universities pass students who are not competent and what may happen if they fail competent students. When the university passed a candidate, she said, that candidate may register with a professional body like the Health Professions Council of South Africa to work as a doctor. 

“What are the implications if we fail to fail a student who is not competent? The implications are that patients may suffer if they are treated by an incompetent doctor, which may lead to the doctor running into trouble if it is found that their work is not up to standard. This may further lead the faculty being labelled as poor for training substandard doctors. 

“The throughput rate of the university may go down and the university may not get subsidy for the students. The student must repeat his module with a lot of emotional and financial burden. They public may suffer because there are not enough healthcare professionals to treat them. Therefore, we must get this right,” she said. 

When assessing students, assessors should start at the bottom: students should know, then they should know how, then they should show how and then they must do. All assessments should meet the basic requirements of validity, reliability, fairness, educational impact and feasibility, explains Prof Brits. 

 

Workplace-based training and assessment

During her PhD study, she looked specifically at assessments in the clinical years of the undergraduate medical programme. “It is quite complicated,” said Prof Brits, “to do assessment for professional qualifications as you need to obey to the rules and regulations of the Department of Education, the Department of Health, the Health Professions Council of South Africa, the Colleges of Medicine of South Africa because they are our examining body, as well as our own university rules and international assessment guidelines and best practices.” 

She compiled a framework to measure what they do at the UFS and found that the decision reliability was excellent – meaning the students that passed during the year passed at the end of the year and those that failed, failed. The reliability of some of the methods used for the final assessment was not good, however, if more assessments with supplementary exams were included, it was better. 

The conclusion of her study was that the UFS mostly complied with the regulations of the regulatory bodies. The recommendation from this study was to implement workplace-based assessment (WBA) to improve both the validity and reliability of assessments and to make it more defendable. Prof Brits explained that WBA is where students get regular assessment and feedback while they work and receive training in hospitals or clinics. “For example, the student is seeing a patient in the emergency department who was stabbed with a knife on his hand. Is the student able to assess the severity, can the student manage the wound and what about follow-up? 

“The advantage of WBA is that we train in real life situations and manage conditions that occur commonly. In real life situations, students use many senses while learning, e.g., seeing, hearing, touching, smelling, which all enhance knowledge retention. It is important that students receive feedback and that we document these encounters. To ensure a holistic approach to the management of patients we use Entrustable Professional Activities or EPAs – something that I can trust a person to do. It is a combination of knowledge, skills and attitudes.”

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept