Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 August 2025 | Story André Damons | Photo André Damons
Prof Hanneke Brits
Prof Gert van Zyl, Dean for the Faculty of Health Sciences, Prof Hanneke Brits, a family medicine specialist at the Free State Department of Health, as well as the Department of Family Medicine at the University of the Free State (UFS), Prof Anthea Rhoda, Deputy Vice-Chancellor: Academic, and Prof Nicholas Pearce, Head of the School of Clinical Medicine before the inaugural lecture.

Universities have an obligation to ensure that their assessments are sound and defendable when they confer degrees for professional qualifications, such as in medicine. Can institutions confidently defend these results and what are the implications if they pass a student who is not competent?

These were some of the questions Prof Hanneke Brits, a family medicine specialist at the Free State Department of Health, as well as the Department of Family Medicine, at the University of the Free State (UFS), addressed during her inaugural lecture on Tuesday (12 August). The UFS, she concluded at the end of her lecture, titled To pass or not to pass: Can we confidently defend the outcome of our assessments? can defend its clinical assessments with the implementation of effective workplace-based assessment and trained examiners. 

 

The implications of passing incompetent students 

According to Prof Brits, who has supervised numerous undergraduate and postgraduate student research projects, she chose this topic because decisions have consequences. She gave an overview of the assessments in the clinical years of the undergraduate medical programme. In so doing, she also answered other questions including what may happen when universities pass students who are not competent and what may happen if they fail competent students. When the university passed a candidate, she said, that candidate may register with a professional body like the Health Professions Council of South Africa to work as a doctor. 

“What are the implications if we fail to fail a student who is not competent? The implications are that patients may suffer if they are treated by an incompetent doctor, which may lead to the doctor running into trouble if it is found that their work is not up to standard. This may further lead the faculty being labelled as poor for training substandard doctors. 

“The throughput rate of the university may go down and the university may not get subsidy for the students. The student must repeat his module with a lot of emotional and financial burden. They public may suffer because there are not enough healthcare professionals to treat them. Therefore, we must get this right,” she said. 

When assessing students, assessors should start at the bottom: students should know, then they should know how, then they should show how and then they must do. All assessments should meet the basic requirements of validity, reliability, fairness, educational impact and feasibility, explains Prof Brits. 

 

Workplace-based training and assessment

During her PhD study, she looked specifically at assessments in the clinical years of the undergraduate medical programme. “It is quite complicated,” said Prof Brits, “to do assessment for professional qualifications as you need to obey to the rules and regulations of the Department of Education, the Department of Health, the Health Professions Council of South Africa, the Colleges of Medicine of South Africa because they are our examining body, as well as our own university rules and international assessment guidelines and best practices.” 

She compiled a framework to measure what they do at the UFS and found that the decision reliability was excellent – meaning the students that passed during the year passed at the end of the year and those that failed, failed. The reliability of some of the methods used for the final assessment was not good, however, if more assessments with supplementary exams were included, it was better. 

The conclusion of her study was that the UFS mostly complied with the regulations of the regulatory bodies. The recommendation from this study was to implement workplace-based assessment (WBA) to improve both the validity and reliability of assessments and to make it more defendable. Prof Brits explained that WBA is where students get regular assessment and feedback while they work and receive training in hospitals or clinics. “For example, the student is seeing a patient in the emergency department who was stabbed with a knife on his hand. Is the student able to assess the severity, can the student manage the wound and what about follow-up? 

“The advantage of WBA is that we train in real life situations and manage conditions that occur commonly. In real life situations, students use many senses while learning, e.g., seeing, hearing, touching, smelling, which all enhance knowledge retention. It is important that students receive feedback and that we document these encounters. To ensure a holistic approach to the management of patients we use Entrustable Professional Activities or EPAs – something that I can trust a person to do. It is a combination of knowledge, skills and attitudes.”

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept