Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 February 2025 | Story Charlene Stanley | Photo Kaleidoscope Studios
Prof Hester Klopper
Prof Hester Klopper, newly appointed Vice-Chancellor and Principal of the University of the Free State.

Re-discovering Our Institutional Heart was the theme of the official opening address of the University of the Free State (UFS) presented by newly appointed UFS Vice-Chancellor and Principal, Prof Hester Klopper, as she addressed UFS staff members in the Odeion Auditorium on the Bloemfontein Campus.

Prof Klopper sketched the current global, national, and local contexts that have affected higher education in general, and the UFS in particular, giving an overview of where the institution has come from, where it currently is, and where it is going. She emphasised the need to focus on the qualities and research areas for which the university has become well known, and to stay true to the values and principles set out in its Vision 130.

“Vision 130 illuminates our way into the future – expounding how we want to establish ourselves as a top-tier university that is continually extending its influence and impact locally, regionally, and globally,” she said.

 

The institutional heart

Prof Klopper referred to the image of a heart that is reflected in the UFS marketing logo, encouraging staff to rediscover what lies at the heart of the institution, and what sets it apart.

“A university such as ours inevitably forms and moulds the lives and characters of the people associated with it; and in turn, it too is shaped and transformed by those who have graced its campuses over the decades. It too has a character. And it certainly has a heart.”

She elaborated on the metaphorical meanings locked up within the concept of a heart, touching on how it symbolised vitality, flow, and energy, interconnectedness, and a sense of belonging. She also highlighted its significance as a beacon of resilience.

“It is associated with courage and steadfastness. Over the past 120 years, the University of the Free State has prevailed despite adversity and has managed to constantly reinvent itself in order to remain relevant, without losing sight of the values in which it is anchored,” she said.

 

Priorities for tenure

One of the broad focus areas that Prof Klopper identified as a priority during her term was establishing the UFS as an innovation and entrepreneurial ecosystem. “This includes advancing transdisciplinary research, moving towards identifying two to three core research themes that address local, regional, and global challenges, and strengthening our unique offering,” she said.

Another focus area will be working towards systemic sustainability, which will include a disciplined approach towards financial management, as well as revision and optimisation of the academic model. She also indicated that internationalisation will be a core theme during her tenure, as will the establishment of the UFS as a first-choice employer and a magnet for talent. To this end, she announced the establishment of a VC Strategic Personnel Fund to grow and attract the best academic talent.

 

Innovation through connection

Prof Klopper concluded that the heartbeat of the UFS lies in innovation through connection.

For her, innovation is expressed in the university’s cutting-edge programme content, its focus on creating a culture of entrepreneurship, optimisation of the academic model, and finding new ways to diversify income streams. On the other hand, connection is reflected in heightened internationalisation, expansive collaborative networks, and a renewed focus on transdisciplinary research and real societal impact through engaged scholarship.

“My sincere wish is that each one of you will rediscover this heartbeat and that it will inspire you this year to take our great institution to even greater heights,” she said.

 

Click to view document Click here for the official opening speech.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept