Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 February 2025 | Story Charlene Stanley | Photo Kaleidoscope Studios
Prof Hester Klopper
Prof Hester Klopper, newly appointed Vice-Chancellor and Principal of the University of the Free State.

Re-discovering Our Institutional Heart was the theme of the official opening address of the University of the Free State (UFS) presented by newly appointed UFS Vice-Chancellor and Principal, Prof Hester Klopper, as she addressed UFS staff members in the Odeion Auditorium on the Bloemfontein Campus.

Prof Klopper sketched the current global, national, and local contexts that have affected higher education in general, and the UFS in particular, giving an overview of where the institution has come from, where it currently is, and where it is going. She emphasised the need to focus on the qualities and research areas for which the university has become well known, and to stay true to the values and principles set out in its Vision 130.

“Vision 130 illuminates our way into the future – expounding how we want to establish ourselves as a top-tier university that is continually extending its influence and impact locally, regionally, and globally,” she said.

 

The institutional heart

Prof Klopper referred to the image of a heart that is reflected in the UFS marketing logo, encouraging staff to rediscover what lies at the heart of the institution, and what sets it apart.

“A university such as ours inevitably forms and moulds the lives and characters of the people associated with it; and in turn, it too is shaped and transformed by those who have graced its campuses over the decades. It too has a character. And it certainly has a heart.”

She elaborated on the metaphorical meanings locked up within the concept of a heart, touching on how it symbolised vitality, flow, and energy, interconnectedness, and a sense of belonging. She also highlighted its significance as a beacon of resilience.

“It is associated with courage and steadfastness. Over the past 120 years, the University of the Free State has prevailed despite adversity and has managed to constantly reinvent itself in order to remain relevant, without losing sight of the values in which it is anchored,” she said.

 

Priorities for tenure

One of the broad focus areas that Prof Klopper identified as a priority during her term was establishing the UFS as an innovation and entrepreneurial ecosystem. “This includes advancing transdisciplinary research, moving towards identifying two to three core research themes that address local, regional, and global challenges, and strengthening our unique offering,” she said.

Another focus area will be working towards systemic sustainability, which will include a disciplined approach towards financial management, as well as revision and optimisation of the academic model. She also indicated that internationalisation will be a core theme during her tenure, as will the establishment of the UFS as a first-choice employer and a magnet for talent. To this end, she announced the establishment of a VC Strategic Personnel Fund to grow and attract the best academic talent.

 

Innovation through connection

Prof Klopper concluded that the heartbeat of the UFS lies in innovation through connection.

For her, innovation is expressed in the university’s cutting-edge programme content, its focus on creating a culture of entrepreneurship, optimisation of the academic model, and finding new ways to diversify income streams. On the other hand, connection is reflected in heightened internationalisation, expansive collaborative networks, and a renewed focus on transdisciplinary research and real societal impact through engaged scholarship.

“My sincere wish is that each one of you will rediscover this heartbeat and that it will inspire you this year to take our great institution to even greater heights,” she said.

 

Click to view document Click here for the official opening speech.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept