Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 February 2025 | Story Edzani Nephalela | Photo Supplied
Teacher Training in Lesotho 2025
Various stakeholders participated in the two-day workshop from 16 to 17 January 2025 as part of the Online Teacher Training in Mathematics and Science on Content project. The initiative aims to equip secondary school mathematics and science teachers across Lesotho with essential skills.

The Faculty of Education at the University of the Free State (UFS) has taken a significant step in regional engagement and educational transformation through its partnership with Lesotho’s Ministry of Education and Training. In October 2023, the faculty, through its Mathematics, Natural Sciences, and Technology Education Department, embarked on an R11 million project to provide online training for 235 mathematics and science teachers in secondary schools across Lesotho.

The Online Teacher Training in Mathematics and Science Content project will mark its final stage on 28 February 2025, following a two-day workshop from 16 to 17 January 2025. The workshop brought together key stakeholders to reflect on its impact and explore opportunities for further collaboration in teacher development. This project aligns with the UFS’s Vision 130 strategy, reinforcing its commitment to research-led, student-centred, and socially responsive education.

 “This initiative is an example of our dedication to leveraging digital learning tools to address regional education challenges,” said Dr Kwazi Magwenzi, Director of Projects and Innovation at the UFS Faculty of Education. “By equipping teachers with enhanced pedagogical skills, we are contributing to long-term improvements in the quality of education in Lesotho.”

Strengthening regional collaboration and societal development

Over the past few years, the faculty has also strengthened its role in delivering high-quality education programmes, such as the Southern African region’s SANRAL Mathematics and Science PhD Programme. Through close collaboration with industry partners, public institutions, and the private sector, the faculty has extended its reach to the Southern African Development Community (SADC), ensuring its teacher development programmes remain relevant and impactful.

“One of our key objectives is to address pressing societal needs actively,” Dr Magwenzi added. “Our commitment to regional engagement means leveraging our expertise to contribute meaningfully to the development of the African continent, particularly in Southern Africa. As our close neighbour, Lesotho was a natural focus for this initiative.”

Expanding the faculty’s footprint in the region

The success of this initiative has laid the foundation for expanding the UFS’s regional footprint through additional short courses tailored to societal needs. The faculty envisions extending its expertise to other regions, further solidifying its position as a leader in education and research.

“As we conclude this phase of the project, we are inspired to build on these achievements,” said Prof Maria Tsakeni, Associate Professor and Head of the Department of Mathematics, Natural Sciences, and Technology Education in the Faculty of Education. “This initiative has demonstrated the power of strategic partnerships and innovative learning models. Moving forward, we aim to design more programmes that contribute to the educational and economic growth of the region.”

By fostering regional collaboration, enhancing teacher competencies, and driving educational innovation, the Faculty of Education at the UFS continues to shape the future of education in Africa. This initiative is a testament to its unwavering commitment to academic excellence and societal transformation.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept