Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 February 2025 | Story Edzani Nephalela | Photo Supplied
Teacher Training in Lesotho 2025
Various stakeholders participated in the two-day workshop from 16 to 17 January 2025 as part of the Online Teacher Training in Mathematics and Science on Content project. The initiative aims to equip secondary school mathematics and science teachers across Lesotho with essential skills.

The Faculty of Education at the University of the Free State (UFS) has taken a significant step in regional engagement and educational transformation through its partnership with Lesotho’s Ministry of Education and Training. In October 2023, the faculty, through its Mathematics, Natural Sciences, and Technology Education Department, embarked on an R11 million project to provide online training for 235 mathematics and science teachers in secondary schools across Lesotho.

The Online Teacher Training in Mathematics and Science Content project will mark its final stage on 28 February 2025, following a two-day workshop from 16 to 17 January 2025. The workshop brought together key stakeholders to reflect on its impact and explore opportunities for further collaboration in teacher development. This project aligns with the UFS’s Vision 130 strategy, reinforcing its commitment to research-led, student-centred, and socially responsive education.

 “This initiative is an example of our dedication to leveraging digital learning tools to address regional education challenges,” said Dr Kwazi Magwenzi, Director of Projects and Innovation at the UFS Faculty of Education. “By equipping teachers with enhanced pedagogical skills, we are contributing to long-term improvements in the quality of education in Lesotho.”

Strengthening regional collaboration and societal development

Over the past few years, the faculty has also strengthened its role in delivering high-quality education programmes, such as the Southern African region’s SANRAL Mathematics and Science PhD Programme. Through close collaboration with industry partners, public institutions, and the private sector, the faculty has extended its reach to the Southern African Development Community (SADC), ensuring its teacher development programmes remain relevant and impactful.

“One of our key objectives is to address pressing societal needs actively,” Dr Magwenzi added. “Our commitment to regional engagement means leveraging our expertise to contribute meaningfully to the development of the African continent, particularly in Southern Africa. As our close neighbour, Lesotho was a natural focus for this initiative.”

Expanding the faculty’s footprint in the region

The success of this initiative has laid the foundation for expanding the UFS’s regional footprint through additional short courses tailored to societal needs. The faculty envisions extending its expertise to other regions, further solidifying its position as a leader in education and research.

“As we conclude this phase of the project, we are inspired to build on these achievements,” said Prof Maria Tsakeni, Associate Professor and Head of the Department of Mathematics, Natural Sciences, and Technology Education in the Faculty of Education. “This initiative has demonstrated the power of strategic partnerships and innovative learning models. Moving forward, we aim to design more programmes that contribute to the educational and economic growth of the region.”

By fostering regional collaboration, enhancing teacher competencies, and driving educational innovation, the Faculty of Education at the UFS continues to shape the future of education in Africa. This initiative is a testament to its unwavering commitment to academic excellence and societal transformation.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept