Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
27 February 2025 | Story Edzani Nephalela | Photo Supplied
Teacher Training in Lesotho 2025
Various stakeholders participated in the two-day workshop from 16 to 17 January 2025 as part of the Online Teacher Training in Mathematics and Science on Content project. The initiative aims to equip secondary school mathematics and science teachers across Lesotho with essential skills.

The Faculty of Education at the University of the Free State (UFS) has taken a significant step in regional engagement and educational transformation through its partnership with Lesotho’s Ministry of Education and Training. In October 2023, the faculty, through its Mathematics, Natural Sciences, and Technology Education Department, embarked on an R11 million project to provide online training for 235 mathematics and science teachers in secondary schools across Lesotho.

The Online Teacher Training in Mathematics and Science Content project will mark its final stage on 28 February 2025, following a two-day workshop from 16 to 17 January 2025. The workshop brought together key stakeholders to reflect on its impact and explore opportunities for further collaboration in teacher development. This project aligns with the UFS’s Vision 130 strategy, reinforcing its commitment to research-led, student-centred, and socially responsive education.

 “This initiative is an example of our dedication to leveraging digital learning tools to address regional education challenges,” said Dr Kwazi Magwenzi, Director of Projects and Innovation at the UFS Faculty of Education. “By equipping teachers with enhanced pedagogical skills, we are contributing to long-term improvements in the quality of education in Lesotho.”

Strengthening regional collaboration and societal development

Over the past few years, the faculty has also strengthened its role in delivering high-quality education programmes, such as the Southern African region’s SANRAL Mathematics and Science PhD Programme. Through close collaboration with industry partners, public institutions, and the private sector, the faculty has extended its reach to the Southern African Development Community (SADC), ensuring its teacher development programmes remain relevant and impactful.

“One of our key objectives is to address pressing societal needs actively,” Dr Magwenzi added. “Our commitment to regional engagement means leveraging our expertise to contribute meaningfully to the development of the African continent, particularly in Southern Africa. As our close neighbour, Lesotho was a natural focus for this initiative.”

Expanding the faculty’s footprint in the region

The success of this initiative has laid the foundation for expanding the UFS’s regional footprint through additional short courses tailored to societal needs. The faculty envisions extending its expertise to other regions, further solidifying its position as a leader in education and research.

“As we conclude this phase of the project, we are inspired to build on these achievements,” said Prof Maria Tsakeni, Associate Professor and Head of the Department of Mathematics, Natural Sciences, and Technology Education in the Faculty of Education. “This initiative has demonstrated the power of strategic partnerships and innovative learning models. Moving forward, we aim to design more programmes that contribute to the educational and economic growth of the region.”

By fostering regional collaboration, enhancing teacher competencies, and driving educational innovation, the Faculty of Education at the UFS continues to shape the future of education in Africa. This initiative is a testament to its unwavering commitment to academic excellence and societal transformation.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept