Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 February 2025 | Story Andre Damons | Photo Supplied
Prof Carolina Pohl-Albertyn
Prof Carlien Pohl-Albertyn is the NRF SARChI Research Chair in Pathogenic Yeasts at the UFS.

A new study by researchers from the University of the Free State (UFS), the National Health Laboratory Service, and the University of Venda has confirmed for the first time that common brown locusts are carriers of pathogenic yeasts that can cause severe infections in humans – especially in people with compromised immune systems or who are seriously ill.

The study, ‘South African brown locusts, Locustana pardalina, hosts fluconazole resistant, Candidozyma (Candida) auris (Clade III)’, highlights for the first time the presence of the pathogenic (disease-producing) fungal yeast C. auris in the digestive tract of the locusts, and shows their potential in disseminating this emerging pathogen. The research started in April 2022, when 20 gregarious (swarming) adult locusts were collected during a large locust outbreak which occurred from September 2021 to May 2022 in the semi-arid Eastern Karoo region in the Eastern Cape. The study is still under peer review.

According to Prof Carlien Pohl-Albertyn, National Research Foundation (NRF) SARChI Research Chair in Pathogenic Yeasts, three C. auris strains were isolated from three different adult locusts, two of which also harboured strains of another potentially pathogenic yeast, Candida orthopsilosis. “The fact that we were able to isolate C. auris from 15% of the sampled locusts, using non-selective media and a non-restrictive temperature of 30°C, may indicate that C. auris is abundant in the locusts and that specific selective isolation is not mandatory,” Prof Pohl-Albertyn said.

“Interestingly, C. auris was isolated from the fore- and hindgut of the locusts. Isolation from the foregut, which is dedicated to food intake and storage, filtering and partial digestion, indicates that C. auris was probably obtained by the locusts via feeding activities. Isolation from the hindgut confirms that C. auris can survive the digestive processes in the midgut and is likely to be released back into the environment via faeces.”

Healthy humans are not at great risk

One of the C. auris strains was studied in more detail. This strain was not resistant to disinfectants but showed decreased susceptibility to the common antifungal drug fluconazole. This is a characteristic of this yeast species and thus not surprising. Most of the emerging pathogenic yeasts show this intrinsic resistance. This highlights the urgent need to discover and develop new antifungal drugs.

Prof Pohl-Albertyn, also a Professor of Microbiology in the UFS Department of Microbiology and Biochemistry, says, “Healthy humans are not at great risk for infection by this yeast and there is currently no proof that ingestion may be harmful to them. This is unfortunately not the case for people with compromised immune systems or who are seriously ill. However, few susceptible people come into direct contact with the locusts in South Africa.”

She added that there are treatment options available, using other antifungal drugs, but C. auris can become resistant to all the currently available antifungal drugs.

Importance of the study

“The fact that locusts are a food source for other animals, such as birds, could lead to eventual distribution of the yeast to people. In other countries, wild locusts are a food source for humans and there more direct transmission may be possible,” Prof Pohl-Albertyn said.

She explained that this study tries to answer questions regarding the natural hosts of this emerging pathogen and how it may facilitate the spread of the pathogen to the rest of the environment. The study is one part of the puzzle regarding how new pathogens may emerge from the environment and spread to people.

“One of the questions in the field of pathogenic yeasts is how C. auris was able to emerge as a pathogen in several different countries in a relatively short period. It is well known as a hospital-acquired pathogen, but it is not known where in the environment it occurs naturally, and which environmental factors may have shaped its evolution and ability to cause human infections. This has implications for the prevention of the spread of this specific yeast species, as well as our preparedness for new pathogenic yeasts that may be emerging from the environment.”

News Archive

Researcher takes home gold at international Famelab competition
2017-06-26

Description: Famelab competition Tags: Famelab competition

UFS researcher nabbed a top international award for
her ground-breaking metallurgical research in the UK.
Photo: Supplied

Recently, University of the Free State (UFS) Centre for Environmental Management master’s student, Tshiamo Legoale, was announced the FameLab International champion at the Cheltenham Science Festival in the United Kingdom. She is probing methods to use wheat as a gold hyper-accumulator – or, as she puts it, “grow gold from wheat”. The young researcher made South Africa proud by winning both the audience’s and the judges’ vote.

Coming back home a hero
“Winning was a surprise to me, because all 31 contestants had wonderful research. They all had really good presentations. I’m very grateful for all the support that I received from home. Social media showed me a lot of love and support. When I felt unconfident, they gave me ‘likes’ and that boosted my confidence a bit,” said Legoale about her win.

As South Africa celebrates Youth Month in June, Tshiamo represents hope for thousands of young South Africans to overcome difficult circumstances and follow careers in science.

The human impact is crucial, because Legoale’s win is not only scientific. It is also social and political. As a young female scientist in South Africa, she represented one of three African countries making it to the finals of FameLab, which has grown to one of the largest science communication competitions internationally.

With this in mind, Legoale says it may, in the end, be necessary to balance the needs of communities with the desire to increase yield. “Are we looking to make a fortune or are we looking to put food on the table?” she asks. “These are all things we consider when we conduct such research.”

World-class research from Africa
In South Africa, an estimated 17.7 million tons of gold is wasted. “All this gold was mined out previously, but tiny amounts remain in the dumps,” Legoale explains.

Her research focuses on the uses of wheat as a gold hyper-accumulator, which essentially means wheat plants are used to harvest gold from mine dumps. Simply put, the wheat is planted in the dumps, where enzymes found in the roots react with the gold and the plant absorbs it. The gold is then absorbed by every part of the plant, except the seeds, which means the next harvest can be used for food if need be.

“South Africa's world-champion young scientist, Tshiamo, represents all that is good about this country – brilliant, bright, and set for a fine future. I'm so proud that British Council SA, together with our partners SAASTA and Jive Media Africa, can help her along the way. Huge congratulations to her from all of us – it is a big win for Africa on the world stage,” said Colm McGivern, British Council South Africa Country Director.

The research represents a win on multiple levels. First, there are the obvious potential socio-economic benefits: food production, job creation, and phytomining is more economical than other contemporary mining methods.

Then there is safety. It is a more environmentally friendly practice than methods like heap leaching, carbon-in-leach or carbon-in-pulp. It is also safer for miners themselves, who will not be exposed to dangerous chemicals like mercury, which has been responsible for a great deal of toxicity in mine dumps. And it is safer for those living in the surrounds.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept