Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 February 2025 | Story Andre Damons | Photo Supplied
Prof Carolina Pohl-Albertyn
Prof Carlien Pohl-Albertyn is the NRF SARChI Research Chair in Pathogenic Yeasts at the UFS.

A new study by researchers from the University of the Free State (UFS), the National Health Laboratory Service, and the University of Venda has confirmed for the first time that common brown locusts are carriers of pathogenic yeasts that can cause severe infections in humans – especially in people with compromised immune systems or who are seriously ill.

The study, ‘South African brown locusts, Locustana pardalina, hosts fluconazole resistant, Candidozyma (Candida) auris (Clade III)’, highlights for the first time the presence of the pathogenic (disease-producing) fungal yeast C. auris in the digestive tract of the locusts, and shows their potential in disseminating this emerging pathogen. The research started in April 2022, when 20 gregarious (swarming) adult locusts were collected during a large locust outbreak which occurred from September 2021 to May 2022 in the semi-arid Eastern Karoo region in the Eastern Cape. The study is still under peer review.

According to Prof Carlien Pohl-Albertyn, National Research Foundation (NRF) SARChI Research Chair in Pathogenic Yeasts, three C. auris strains were isolated from three different adult locusts, two of which also harboured strains of another potentially pathogenic yeast, Candida orthopsilosis. “The fact that we were able to isolate C. auris from 15% of the sampled locusts, using non-selective media and a non-restrictive temperature of 30°C, may indicate that C. auris is abundant in the locusts and that specific selective isolation is not mandatory,” Prof Pohl-Albertyn said.

“Interestingly, C. auris was isolated from the fore- and hindgut of the locusts. Isolation from the foregut, which is dedicated to food intake and storage, filtering and partial digestion, indicates that C. auris was probably obtained by the locusts via feeding activities. Isolation from the hindgut confirms that C. auris can survive the digestive processes in the midgut and is likely to be released back into the environment via faeces.”

Healthy humans are not at great risk

One of the C. auris strains was studied in more detail. This strain was not resistant to disinfectants but showed decreased susceptibility to the common antifungal drug fluconazole. This is a characteristic of this yeast species and thus not surprising. Most of the emerging pathogenic yeasts show this intrinsic resistance. This highlights the urgent need to discover and develop new antifungal drugs.

Prof Pohl-Albertyn, also a Professor of Microbiology in the UFS Department of Microbiology and Biochemistry, says, “Healthy humans are not at great risk for infection by this yeast and there is currently no proof that ingestion may be harmful to them. This is unfortunately not the case for people with compromised immune systems or who are seriously ill. However, few susceptible people come into direct contact with the locusts in South Africa.”

She added that there are treatment options available, using other antifungal drugs, but C. auris can become resistant to all the currently available antifungal drugs.

Importance of the study

“The fact that locusts are a food source for other animals, such as birds, could lead to eventual distribution of the yeast to people. In other countries, wild locusts are a food source for humans and there more direct transmission may be possible,” Prof Pohl-Albertyn said.

She explained that this study tries to answer questions regarding the natural hosts of this emerging pathogen and how it may facilitate the spread of the pathogen to the rest of the environment. The study is one part of the puzzle regarding how new pathogens may emerge from the environment and spread to people.

“One of the questions in the field of pathogenic yeasts is how C. auris was able to emerge as a pathogen in several different countries in a relatively short period. It is well known as a hospital-acquired pathogen, but it is not known where in the environment it occurs naturally, and which environmental factors may have shaped its evolution and ability to cause human infections. This has implications for the prevention of the spread of this specific yeast species, as well as our preparedness for new pathogenic yeasts that may be emerging from the environment.”

News Archive

UFS scientists involved in groundbreaking research to protect rhino horns
2010-07-27

Pictured from the left are: Prof. Paul Grobler (UFS), Prof. Antoinette Kotze (NZG) and Ms. Karen Ehlers (UFS).
Photo: Supplied

Scientists at the University of the Free State (UFS) are involved in a research study that will help to trace the source of any southern white rhino product to a specific geographic location.

This is an initiative of the National Zoological Gardens of South Africa (NZG).

Prof. Paul Grobler, who is heading the project in the Department of Genetics at the UFS, said that the research might even allow the identification of the individual animal from which a product was derived. This would allow law enforcement agencies not only to determine with certainty whether rhino horn, traded illegally on the international black market, had its origin in South Africa, but also from which region of South Africa the product came.

This additional knowledge is expected to have a major impact on the illicit trade in rhino horn and provide a potent legal club to get at rhino horn smugglers and traders.

The full research team consists of Prof. Grobler; Christiaan Labuschagne, a Ph.D. student at the UFS; Prof. Antoinette Kotze from the NZG, who is also an affiliated professor at the UFS; and Dr Desire Dalton, also from the NZG.

The team’s research involves the identification of small differences in the genetic code among white rhino populations in different regions of South Africa. The genetic code of every species is unique, and is composed of a sequence of the four nucleotide bases G, A, T and C that are inherited from one generation to the next. When one nucleotide base is changed or mutated in an individual, this mutated base is also inherited by the individual's progeny.

If, after many generations, this changed base is present in at least 1% of the individuals of a group, it is described as a single nucleotide polymorphism (SNP), pronounced "snip". Breeding populations that are geographically and reproductively isolated often contain different patterns of such SNPs, which act as a unique genetic signature for each population.

The team is assembling a detailed list of all SNPs found in white rhinos from different regions in South Africa. The work is done in collaboration with the Pretoria-based company, Inqaba Biotech, who is performing the nucleotide sequencing that is required for the identification of the SNPs.

Financial support for the project is provided by the Advanced Biomolecular Research cluster at the UFS.

The southern white rhino was once thought to be extinct, but in a conservation success story the species was boosted from an initial population of about 100 individuals located in KwaZulu-Natal at the end of the 19th century, to the present population of about 15 000 individuals. The southern white rhino is still, however, listed as “near threatened” by the World Wildlife Fund (WWF).

Media Release:
Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za 
27 July 2010



 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept