Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 February 2025 | Story Andre Damons | Photo Supplied
Prof Carolina Pohl-Albertyn
Prof Carlien Pohl-Albertyn is the NRF SARChI Research Chair in Pathogenic Yeasts at the UFS.

A new study by researchers from the University of the Free State (UFS), the National Health Laboratory Service, and the University of Venda has confirmed for the first time that common brown locusts are carriers of pathogenic yeasts that can cause severe infections in humans – especially in people with compromised immune systems or who are seriously ill.

The study, ‘South African brown locusts, Locustana pardalina, hosts fluconazole resistant, Candidozyma (Candida) auris (Clade III)’, highlights for the first time the presence of the pathogenic (disease-producing) fungal yeast C. auris in the digestive tract of the locusts, and shows their potential in disseminating this emerging pathogen. The research started in April 2022, when 20 gregarious (swarming) adult locusts were collected during a large locust outbreak which occurred from September 2021 to May 2022 in the semi-arid Eastern Karoo region in the Eastern Cape. The study is still under peer review.

According to Prof Carlien Pohl-Albertyn, National Research Foundation (NRF) SARChI Research Chair in Pathogenic Yeasts, three C. auris strains were isolated from three different adult locusts, two of which also harboured strains of another potentially pathogenic yeast, Candida orthopsilosis. “The fact that we were able to isolate C. auris from 15% of the sampled locusts, using non-selective media and a non-restrictive temperature of 30°C, may indicate that C. auris is abundant in the locusts and that specific selective isolation is not mandatory,” Prof Pohl-Albertyn said.

“Interestingly, C. auris was isolated from the fore- and hindgut of the locusts. Isolation from the foregut, which is dedicated to food intake and storage, filtering and partial digestion, indicates that C. auris was probably obtained by the locusts via feeding activities. Isolation from the hindgut confirms that C. auris can survive the digestive processes in the midgut and is likely to be released back into the environment via faeces.”

Healthy humans are not at great risk

One of the C. auris strains was studied in more detail. This strain was not resistant to disinfectants but showed decreased susceptibility to the common antifungal drug fluconazole. This is a characteristic of this yeast species and thus not surprising. Most of the emerging pathogenic yeasts show this intrinsic resistance. This highlights the urgent need to discover and develop new antifungal drugs.

Prof Pohl-Albertyn, also a Professor of Microbiology in the UFS Department of Microbiology and Biochemistry, says, “Healthy humans are not at great risk for infection by this yeast and there is currently no proof that ingestion may be harmful to them. This is unfortunately not the case for people with compromised immune systems or who are seriously ill. However, few susceptible people come into direct contact with the locusts in South Africa.”

She added that there are treatment options available, using other antifungal drugs, but C. auris can become resistant to all the currently available antifungal drugs.

Importance of the study

“The fact that locusts are a food source for other animals, such as birds, could lead to eventual distribution of the yeast to people. In other countries, wild locusts are a food source for humans and there more direct transmission may be possible,” Prof Pohl-Albertyn said.

She explained that this study tries to answer questions regarding the natural hosts of this emerging pathogen and how it may facilitate the spread of the pathogen to the rest of the environment. The study is one part of the puzzle regarding how new pathogens may emerge from the environment and spread to people.

“One of the questions in the field of pathogenic yeasts is how C. auris was able to emerge as a pathogen in several different countries in a relatively short period. It is well known as a hospital-acquired pathogen, but it is not known where in the environment it occurs naturally, and which environmental factors may have shaped its evolution and ability to cause human infections. This has implications for the prevention of the spread of this specific yeast species, as well as our preparedness for new pathogenic yeasts that may be emerging from the environment.”

News Archive

During 2011: Infrastructure at the UFS
2011-12-01

Video clips:

Health Sciences Building
Clinical Skills Centre
Economic Sciences and Lecture Hall Building
Teacher Education Building
Biotechnology Building


A publication in which the infrastructure developments at the UFS are portrayed, was published this year. This publication celebrates the enormous development projects undertaken.
 
Description: 2011 Infrastructure_part 1 Tags: 2011 Infrastructure_part 1  Description: 2011 Infrastructure_part 2 Tags: 2011 Infrastructure_part 2  Description: 2011 Infrastructure_part 3 Tags: 2011 Infrastructure_part 3 
Constructive change (part 1) Constructive change (part 2) Constructive change (part 3)

Much has been done this past year to improve the infrastructure of our Bloemfontein and Qwaqwa Campuses with several buildings being built, some renovated and improvements made. Attention was specifically given to the growing need for lecture hall facilities and office space.

Some of the developments on our Bloemfontein Campus include: a brand-new entrance in Nelson Mandela Drive; a Memorial for Women and a Botanical Garden; a building for teacher education opposite the UFS Sasol Library; a building for our Faculty of Health Sciences opposite the Francois Retief Building; a Clinical Skills Centre for Allied Health Professions (the first in the country); and a building for our Faculty of Economic and Management Sciences between the Flippie Groenewoud Building and Wynand Mouton Theatre.

On our Qwaqwa Campus a building for teacher education is being constructed and some of the laboratories were refurbished and upgraded. More student accommodation is also well underway. A village development of four housing units that will accommodate 1000 students will be constructed on our Bloemfontein Campus.
Renovations and extensions were also made to some of the existing buildings such as the Architecture Building, the Biotechnology Building, the Department of Chemistry, the Stef Coetzee Building, the foyer of the Odeion, the Wynand Mouton Theatre and the Callie Human Centre. A staff restaurant has also been established on the Bloemfontein Campus and the building of ‘Little Professors’, a nursery school, is well underway.
“A building not only signals value to the outside; it also builds value on the inside. That is why it is important to notice how space has been organised and allocated to enhance the building of a community and to give academics, students and communities a sense of belonging to the university,” says Prof. Jonathan Jansen, our Vice-Chancellor and Rector.

The funding for most of the projects was made possible with an infrastructural grant from the Department of Education and Training.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept