Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 February 2025 | Story Andre Damons | Photo Supplied
Prof Carolina Pohl-Albertyn
Prof Carlien Pohl-Albertyn is the NRF SARChI Research Chair in Pathogenic Yeasts at the UFS.

A new study by researchers from the University of the Free State (UFS), the National Health Laboratory Service, and the University of Venda has confirmed for the first time that common brown locusts are carriers of pathogenic yeasts that can cause severe infections in humans – especially in people with compromised immune systems or who are seriously ill.

The study, ‘South African brown locusts, Locustana pardalina, hosts fluconazole resistant, Candidozyma (Candida) auris (Clade III)’, highlights for the first time the presence of the pathogenic (disease-producing) fungal yeast C. auris in the digestive tract of the locusts, and shows their potential in disseminating this emerging pathogen. The research started in April 2022, when 20 gregarious (swarming) adult locusts were collected during a large locust outbreak which occurred from September 2021 to May 2022 in the semi-arid Eastern Karoo region in the Eastern Cape. The study is still under peer review.

According to Prof Carlien Pohl-Albertyn, National Research Foundation (NRF) SARChI Research Chair in Pathogenic Yeasts, three C. auris strains were isolated from three different adult locusts, two of which also harboured strains of another potentially pathogenic yeast, Candida orthopsilosis. “The fact that we were able to isolate C. auris from 15% of the sampled locusts, using non-selective media and a non-restrictive temperature of 30°C, may indicate that C. auris is abundant in the locusts and that specific selective isolation is not mandatory,” Prof Pohl-Albertyn said.

“Interestingly, C. auris was isolated from the fore- and hindgut of the locusts. Isolation from the foregut, which is dedicated to food intake and storage, filtering and partial digestion, indicates that C. auris was probably obtained by the locusts via feeding activities. Isolation from the hindgut confirms that C. auris can survive the digestive processes in the midgut and is likely to be released back into the environment via faeces.”

Healthy humans are not at great risk

One of the C. auris strains was studied in more detail. This strain was not resistant to disinfectants but showed decreased susceptibility to the common antifungal drug fluconazole. This is a characteristic of this yeast species and thus not surprising. Most of the emerging pathogenic yeasts show this intrinsic resistance. This highlights the urgent need to discover and develop new antifungal drugs.

Prof Pohl-Albertyn, also a Professor of Microbiology in the UFS Department of Microbiology and Biochemistry, says, “Healthy humans are not at great risk for infection by this yeast and there is currently no proof that ingestion may be harmful to them. This is unfortunately not the case for people with compromised immune systems or who are seriously ill. However, few susceptible people come into direct contact with the locusts in South Africa.”

She added that there are treatment options available, using other antifungal drugs, but C. auris can become resistant to all the currently available antifungal drugs.

Importance of the study

“The fact that locusts are a food source for other animals, such as birds, could lead to eventual distribution of the yeast to people. In other countries, wild locusts are a food source for humans and there more direct transmission may be possible,” Prof Pohl-Albertyn said.

She explained that this study tries to answer questions regarding the natural hosts of this emerging pathogen and how it may facilitate the spread of the pathogen to the rest of the environment. The study is one part of the puzzle regarding how new pathogens may emerge from the environment and spread to people.

“One of the questions in the field of pathogenic yeasts is how C. auris was able to emerge as a pathogen in several different countries in a relatively short period. It is well known as a hospital-acquired pathogen, but it is not known where in the environment it occurs naturally, and which environmental factors may have shaped its evolution and ability to cause human infections. This has implications for the prevention of the spread of this specific yeast species, as well as our preparedness for new pathogenic yeasts that may be emerging from the environment.”

News Archive

NRF commits R30-million for research at the UFS
2007-02-20

The National Research Foundation (NRF) has committed approximately R30-million for various research projects at the University of the Free State (UFS).
 
According to Prof Frans Swanepoel, Director of Research Development at the UFS, the NRF has also approved all eight research niche areas that were submitted to the NRF, the highest number approved at any university in the country.
 
Prof Swanepoel said the 24 research projects for which funding had been obtained from the NRF ranged from traditional healing and HIV/Aids/tuberculosis management, practices of the paediatric anti-retroviral programme at the UFS to nano-materials synthesis and characterisation.
 
He said the eight research niche areas were part of an initiative at the UFS to establish strategic clusters of academic and research excellence.
 
“There will be six strategic academic clusters at the UFS and the eight NRF-approved research niche areas will form part of them,” Prof Swanepoel said.
 
The six strategic clusters are:
1.         Water management in water-scarce areas
2.         New frontiers in poverty reduction and sustainable development
3.         Social transformation in diverse societies
4.         Ecologically sound value chains for agricultural commodities
5.         Materials and nano sciences
6.         Advanced bio-molecular research
 
Prof Swanepoel said that the UFS had also submitted five proposals in terms of an NRF initiative to establish research chairs at South African universities.
 
“Linked to our intention to establish six strategic academic clusters, five proposals for the South African Research Chair Initiative (SARCHi) were submitted. All five pre-proposals were accepted in the first round of screening, and successful candidates have been invited to submit full proposals by the end of February,” he said.
 
The proposed research chairs are:
 
Petro- and organometallic chemistry
Biocatalytic and biomimetic oxidation-reduction systems
Nano-solid state lighting
People’s health and well-being
Water management
 
Speaking at the official opening of the university earlier this month, the Rector and Vice-Chancellor of the UFS, Prof Frederick Fourie, said: “The cluster initiative represents a strategic initiative to focus our energies in a few key areas, investing in them so that the UFS can become an international leader in those fields.”
 
“A medium sized university such as the UFS with relatively limited human, physical and financial resources has to achieve this kind of ‘critical mass’ and synergy to establish itself in terms of its core functions of teaching/learning, research and community engagement,” said Prof Fourie.
 
Media release
Issued by: Lacea Loader
Media Representative
Tel: 051 401 2584
Cell: 083 645 2454
20 February 2007

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept