Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 February 2025 | Story Andre Damons | Photo Supplied
Prof Carolina Pohl-Albertyn
Prof Carlien Pohl-Albertyn is the NRF SARChI Research Chair in Pathogenic Yeasts at the UFS.

A new study by researchers from the University of the Free State (UFS), the National Health Laboratory Service, and the University of Venda has confirmed for the first time that common brown locusts are carriers of pathogenic yeasts that can cause severe infections in humans – especially in people with compromised immune systems or who are seriously ill.

The study, ‘South African brown locusts, Locustana pardalina, hosts fluconazole resistant, Candidozyma (Candida) auris (Clade III)’, highlights for the first time the presence of the pathogenic (disease-producing) fungal yeast C. auris in the digestive tract of the locusts, and shows their potential in disseminating this emerging pathogen. The research started in April 2022, when 20 gregarious (swarming) adult locusts were collected during a large locust outbreak which occurred from September 2021 to May 2022 in the semi-arid Eastern Karoo region in the Eastern Cape. The study is still under peer review.

According to Prof Carlien Pohl-Albertyn, National Research Foundation (NRF) SARChI Research Chair in Pathogenic Yeasts, three C. auris strains were isolated from three different adult locusts, two of which also harboured strains of another potentially pathogenic yeast, Candida orthopsilosis. “The fact that we were able to isolate C. auris from 15% of the sampled locusts, using non-selective media and a non-restrictive temperature of 30°C, may indicate that C. auris is abundant in the locusts and that specific selective isolation is not mandatory,” Prof Pohl-Albertyn said.

“Interestingly, C. auris was isolated from the fore- and hindgut of the locusts. Isolation from the foregut, which is dedicated to food intake and storage, filtering and partial digestion, indicates that C. auris was probably obtained by the locusts via feeding activities. Isolation from the hindgut confirms that C. auris can survive the digestive processes in the midgut and is likely to be released back into the environment via faeces.”

Healthy humans are not at great risk

One of the C. auris strains was studied in more detail. This strain was not resistant to disinfectants but showed decreased susceptibility to the common antifungal drug fluconazole. This is a characteristic of this yeast species and thus not surprising. Most of the emerging pathogenic yeasts show this intrinsic resistance. This highlights the urgent need to discover and develop new antifungal drugs.

Prof Pohl-Albertyn, also a Professor of Microbiology in the UFS Department of Microbiology and Biochemistry, says, “Healthy humans are not at great risk for infection by this yeast and there is currently no proof that ingestion may be harmful to them. This is unfortunately not the case for people with compromised immune systems or who are seriously ill. However, few susceptible people come into direct contact with the locusts in South Africa.”

She added that there are treatment options available, using other antifungal drugs, but C. auris can become resistant to all the currently available antifungal drugs.

Importance of the study

“The fact that locusts are a food source for other animals, such as birds, could lead to eventual distribution of the yeast to people. In other countries, wild locusts are a food source for humans and there more direct transmission may be possible,” Prof Pohl-Albertyn said.

She explained that this study tries to answer questions regarding the natural hosts of this emerging pathogen and how it may facilitate the spread of the pathogen to the rest of the environment. The study is one part of the puzzle regarding how new pathogens may emerge from the environment and spread to people.

“One of the questions in the field of pathogenic yeasts is how C. auris was able to emerge as a pathogen in several different countries in a relatively short period. It is well known as a hospital-acquired pathogen, but it is not known where in the environment it occurs naturally, and which environmental factors may have shaped its evolution and ability to cause human infections. This has implications for the prevention of the spread of this specific yeast species, as well as our preparedness for new pathogenic yeasts that may be emerging from the environment.”

News Archive

Suspension of the South African Doping Control Laboratory (SADoCoL) by the World Anti-Doping Agency (WADA)
2016-05-04

The senior leadership of the UFS and the management of the South African Doping Control Laboratory (SADoCoL) take note of the decision by the World Anti-Doping Agency (WADA) to suspend the laboratory’s accreditation to perform doping control analysis on biological samples of athletes and sportsmen and -women until 30 September 2016. During this time of suspension, all sport-related samples will be sent for analysis to the WADA accredited laboratory in Qatar until the accreditation of SADoCoL is re-established. Analysis according to WADA accreditation will therefore not be interrupted during the period of the suspension of the accreditation of SADoCoL.

The announcement by WADA on 3 May 2016 follows a voluntary decision by SADoCoL in March 2016 to temporarily close the laboratory for some of its routine analytical duties for six months, as from 1 April 2016. The decision was taken in consultation with the senior leadership of the UFS and other role players, especially the Department of Sport and Recreation of South Africa (SRSA) and the South African Institute for Drug-Free Sport (SAIDS). SADoCoL is a specialised service laboratory of the University of the Free State (UFS) and has been in existence for more than thirty years.

Due to the ever-increasing demands on the number, variety and analytical sensitivity of compounds to be analysed according to the Prohibited List of WADA, technical and infrastructure adaptations need to be implemented in the laboratory continuously to keep up with the demands. Over the last year, SADoCoL has drastically increased its capacity in both personnel and infrastructure, to a point where these changes can be implemented for optimal performance of the laboratory.  This has to be done while normal routine analysis continues, and it became clear that at present, implementation cannot be successfully accomplished together with the workload from normal routine analyses.

The time of suspension will be utilised to implement and test these new systems in order to achieve the standard presently required by WADA, as well as to perform development and improvements.  This development will be performed in close collaboration with other role players in the anti-doping movement in South Africa, such as SAIDS and SRSA. Scientific development aid will also be acquired from other doping control laboratories worldwide in order to assure that the high analytical quality is maintained and expanded to meet the fast growing challenges in this field. The progress of the process will be closely monitored, and the upgraded methodologies will then, after rigorous testing, be implemented to ensure that the required analytical quality is maintained so as to obtain re-accreditation by WADA at the conclusion of the suspension period.

Issued by: Lacea Loader (Director: Communication and Brand Management)
Telephone: +27(0)51 401 2584 or +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept