Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 February 2025 | Story Andre Damons | Photo Supplied
Prof Carolina Pohl-Albertyn
Prof Carlien Pohl-Albertyn is the NRF SARChI Research Chair in Pathogenic Yeasts at the UFS.

A new study by researchers from the University of the Free State (UFS), the National Health Laboratory Service, and the University of Venda has confirmed for the first time that common brown locusts are carriers of pathogenic yeasts that can cause severe infections in humans – especially in people with compromised immune systems or who are seriously ill.

The study, ‘South African brown locusts, Locustana pardalina, hosts fluconazole resistant, Candidozyma (Candida) auris (Clade III)’, highlights for the first time the presence of the pathogenic (disease-producing) fungal yeast C. auris in the digestive tract of the locusts, and shows their potential in disseminating this emerging pathogen. The research started in April 2022, when 20 gregarious (swarming) adult locusts were collected during a large locust outbreak which occurred from September 2021 to May 2022 in the semi-arid Eastern Karoo region in the Eastern Cape. The study is still under peer review.

According to Prof Carlien Pohl-Albertyn, National Research Foundation (NRF) SARChI Research Chair in Pathogenic Yeasts, three C. auris strains were isolated from three different adult locusts, two of which also harboured strains of another potentially pathogenic yeast, Candida orthopsilosis. “The fact that we were able to isolate C. auris from 15% of the sampled locusts, using non-selective media and a non-restrictive temperature of 30°C, may indicate that C. auris is abundant in the locusts and that specific selective isolation is not mandatory,” Prof Pohl-Albertyn said.

“Interestingly, C. auris was isolated from the fore- and hindgut of the locusts. Isolation from the foregut, which is dedicated to food intake and storage, filtering and partial digestion, indicates that C. auris was probably obtained by the locusts via feeding activities. Isolation from the hindgut confirms that C. auris can survive the digestive processes in the midgut and is likely to be released back into the environment via faeces.”

Healthy humans are not at great risk

One of the C. auris strains was studied in more detail. This strain was not resistant to disinfectants but showed decreased susceptibility to the common antifungal drug fluconazole. This is a characteristic of this yeast species and thus not surprising. Most of the emerging pathogenic yeasts show this intrinsic resistance. This highlights the urgent need to discover and develop new antifungal drugs.

Prof Pohl-Albertyn, also a Professor of Microbiology in the UFS Department of Microbiology and Biochemistry, says, “Healthy humans are not at great risk for infection by this yeast and there is currently no proof that ingestion may be harmful to them. This is unfortunately not the case for people with compromised immune systems or who are seriously ill. However, few susceptible people come into direct contact with the locusts in South Africa.”

She added that there are treatment options available, using other antifungal drugs, but C. auris can become resistant to all the currently available antifungal drugs.

Importance of the study

“The fact that locusts are a food source for other animals, such as birds, could lead to eventual distribution of the yeast to people. In other countries, wild locusts are a food source for humans and there more direct transmission may be possible,” Prof Pohl-Albertyn said.

She explained that this study tries to answer questions regarding the natural hosts of this emerging pathogen and how it may facilitate the spread of the pathogen to the rest of the environment. The study is one part of the puzzle regarding how new pathogens may emerge from the environment and spread to people.

“One of the questions in the field of pathogenic yeasts is how C. auris was able to emerge as a pathogen in several different countries in a relatively short period. It is well known as a hospital-acquired pathogen, but it is not known where in the environment it occurs naturally, and which environmental factors may have shaped its evolution and ability to cause human infections. This has implications for the prevention of the spread of this specific yeast species, as well as our preparedness for new pathogenic yeasts that may be emerging from the environment.”

News Archive

Sunflowers are satellite dishes for sunshine, or are they?
2016-07-20

Eighty-six percent of South Africa’s
sunflowers are produced in the
Free State and North West provinces.

Helen Mirren, the English actress, said “the sunflower is like a satellite dish for sunshine”. However, researchers at the University of the Free State (UFS) have found that too much of this sunshine could have a negative effect on the growth of sunflowers, which are a major source of oil in South Africa.

According to Dr Gert Ceronio from the Department of Soil, Crop, and Climate Sciences at the UFS, extremely high soil temperatures play a definite role in the sprouting of sunflower seedlings. Together with Lize Henning, professional officer in the department, and Dr André Nel from the Agricultural Research Council, he is doing research on biotic and abiotic factors that could have an impact on sunflowers.

Description: Sonneblom 2 Tags: Sonneblom 2

Various degrees of deformity (bad-left
to none-right) in seedlings of the same
cultivar at very high soil temperatures.
Photo: Dr Gert Ceronio

Impact of high temperatures on sunflower production

The Free State and North West provinces, which produce 86% of South Africa’s sunflowers, are afflicted especially by high summer temperatures that lead to extremely high soil temperatures.

Dr Ceronio says: “Although sunflower seeds are able to germinate at temperatures from as low as 4°C to as high as 41°C, soil temperatures of 35°C and higher could have a negative effect on the vegetative faculty of sunflower seedlings, and could have an adverse effect on the percentage of sunflowers that germinate. From the end of November until mid-January, this is a common phenomenon in the sandy soil of the Free State and North West provinces. Soil temperatures can easily exceed the critical temperature of 43°C, which can lead to poor germination and even the replanting of sunflowers.”

Since temperature have a huge impact not only on the germination of sunflower seeds, but also on the vegetative faculty and sprouting of sunflower seedlings, Dr Ceronio suggests that sunflowers should be planted in soil with soil temperatures of 22 to 30°C. Planting is usually done in October and early November. Unfortunately, this is not always possible, as soil moisture is not optimal for growth. Farmers are then compelled to plant sunflowers later.

Impact of herbicides on sunflower growth

“High soil temperatures, combined with the herbicide sensitivity of some cultivars, could lead to the poor development of seedlings," says Dr Ceronio.

The use of herbicides, such as ALACHLOR, for the control of weeds in sunflowers is common practice in sunflower production. It has already been determined that ALACHLOR could still have a damaging effect on the seedlings of some cultivars during germination and sprouting, even at recommended application dosages.

“The purpose of the continued research is to establish the sensitivity of sunflower cultivars to ALACHLOR when exposed to high soil temperatures,” says Dr Ceronio.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept