Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
17 February 2025 | Story Andre Damons | Photo Supplied
Prof Carolina Pohl-Albertyn
Prof Carlien Pohl-Albertyn is the NRF SARChI Research Chair in Pathogenic Yeasts at the UFS.

A new study by researchers from the University of the Free State (UFS), the National Health Laboratory Service, and the University of Venda has confirmed for the first time that common brown locusts are carriers of pathogenic yeasts that can cause severe infections in humans – especially in people with compromised immune systems or who are seriously ill.

The study, ‘South African brown locusts, Locustana pardalina, hosts fluconazole resistant, Candidozyma (Candida) auris (Clade III)’, highlights for the first time the presence of the pathogenic (disease-producing) fungal yeast C. auris in the digestive tract of the locusts, and shows their potential in disseminating this emerging pathogen. The research started in April 2022, when 20 gregarious (swarming) adult locusts were collected during a large locust outbreak which occurred from September 2021 to May 2022 in the semi-arid Eastern Karoo region in the Eastern Cape. The study is still under peer review.

According to Prof Carlien Pohl-Albertyn, National Research Foundation (NRF) SARChI Research Chair in Pathogenic Yeasts, three C. auris strains were isolated from three different adult locusts, two of which also harboured strains of another potentially pathogenic yeast, Candida orthopsilosis. “The fact that we were able to isolate C. auris from 15% of the sampled locusts, using non-selective media and a non-restrictive temperature of 30°C, may indicate that C. auris is abundant in the locusts and that specific selective isolation is not mandatory,” Prof Pohl-Albertyn said.

“Interestingly, C. auris was isolated from the fore- and hindgut of the locusts. Isolation from the foregut, which is dedicated to food intake and storage, filtering and partial digestion, indicates that C. auris was probably obtained by the locusts via feeding activities. Isolation from the hindgut confirms that C. auris can survive the digestive processes in the midgut and is likely to be released back into the environment via faeces.”

Healthy humans are not at great risk

One of the C. auris strains was studied in more detail. This strain was not resistant to disinfectants but showed decreased susceptibility to the common antifungal drug fluconazole. This is a characteristic of this yeast species and thus not surprising. Most of the emerging pathogenic yeasts show this intrinsic resistance. This highlights the urgent need to discover and develop new antifungal drugs.

Prof Pohl-Albertyn, also a Professor of Microbiology in the UFS Department of Microbiology and Biochemistry, says, “Healthy humans are not at great risk for infection by this yeast and there is currently no proof that ingestion may be harmful to them. This is unfortunately not the case for people with compromised immune systems or who are seriously ill. However, few susceptible people come into direct contact with the locusts in South Africa.”

She added that there are treatment options available, using other antifungal drugs, but C. auris can become resistant to all the currently available antifungal drugs.

Importance of the study

“The fact that locusts are a food source for other animals, such as birds, could lead to eventual distribution of the yeast to people. In other countries, wild locusts are a food source for humans and there more direct transmission may be possible,” Prof Pohl-Albertyn said.

She explained that this study tries to answer questions regarding the natural hosts of this emerging pathogen and how it may facilitate the spread of the pathogen to the rest of the environment. The study is one part of the puzzle regarding how new pathogens may emerge from the environment and spread to people.

“One of the questions in the field of pathogenic yeasts is how C. auris was able to emerge as a pathogen in several different countries in a relatively short period. It is well known as a hospital-acquired pathogen, but it is not known where in the environment it occurs naturally, and which environmental factors may have shaped its evolution and ability to cause human infections. This has implications for the prevention of the spread of this specific yeast species, as well as our preparedness for new pathogenic yeasts that may be emerging from the environment.”

News Archive

UFS researcher explores the future cost of cancer
2017-01-10

 Description: 001 Dr Alicia Sherriff Tags: 001 Dr Alicia Sherriff

Dr Alicia Sherriff, Head the Department of Oncology
at the UFS Faculty of Health Sciences, co-authored
an article in the South African Medical Journal.

Photo: Charl Devenish

Cancer is on an exponential rise globally, and the cost of treatment is a growing international problem. South Africa alone is expected to see a 78% increase in cancer cases. Dr Alicia Sheriff, Head of the Department of Oncology, collaborated on and co-authored a research paper for the South African Medical Journal on the future of oncology treatment in the country, along with doctors from various universities across South Africa. The article, titled "The future cost of cancer: interdisciplinary cost management strategy", looks at the prognosis of cancer management in the country.

Cancer is on the rise

There is a visible growth of the cancer disease in the developing world. Rapidly changing lifestyles, uncontrolled urbanisation, pollution, and population ageing are some dynamics that provide a lethal cocktail of infectious and lifestyle risk factors that leave people at a higher risk of developing cancer.

The simultaneous increase in cancer incidence has increased the cost of treatment exponentially. The cost of cancer treatment is multitiered, making the provision of care for cancer patients a high-risk business. A combination of treatment delays, limited resources, differently skilled personnel, high patient volumes and advanced disease stage on presentation all place a bigger burden on the delivery of optimal cancer care outcomes.

Adoption of new strategies

According to the doctors, innovative thinking to embrace technology, combined with a preventive approach, as well as lowering the cost of treatment drugs should be prioritised. So should the commercialisation of new technologies that will diagnose and treat cancer in its early stages. They also encourage interdisciplinary research funding in South Africa as a way to better understand the demographic and molecular dynamics of cancer in the country, along with retaining more oncologists in the public health sector.

Efficient solutions to curb cancer mortality

The doctors assert there is a need to continue to look for more efficient measures to best treat the disease, and hopefully bring about a change in mortality levels in South Africa.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept