Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 February 2025 | Story Martinette Brits | Photo Supplied
Prof Maxim Finkelstein, A1-rated researcher from the University of the Free State, has been selected as the 2024 - 2026 Ewha Global Fellow by Ewha Womans University.

An esteemed researcher from the University of the Free State (UFS), Prof Maxim Finkelstein, has been named a 2024 - 2026 Ewha Global Fellow (EGF) by Ewha Womans University in South Korea.

Prof Finkelstein, an A1-rated researcher from the Department of Mathematical Statistics and Actuarial Science, received this honour in recognition of his outstanding collaboration with Prof Ji Hwan Cha from Ewha’s Department of Statistics. Prof Cha nominated him as a leading expert in his field, highlighting their long-standing partnership and significant contributions to mathematical sciences.

According to Hyang-Sook Lee, President of the Ewha Womans University, the EGF programme “encourages distinguished scholars from all over the world to actively collaborate in research and education with Ewha faculty members.”

 

The genesis of a unique collaboration

Prof Finkelstein has collaborated extensively with researchers across Europe and the United States but his partnership with Prof Cha is particularly notable. “I started working at the UFS as a Professor in 1998 when he had just obtained his PhD,” recalls Prof Finkelstein.

At the time, Prof Finkelstein was already an established researcher, while Prof Cha was in the early stages. “His letter to me about one of my articles was sent to me by regular mail to my previous working address in Saint Petersburg, Russia, and did not reach me. We eventually connected around 2006, and our collaboration gradually took shape,” he explains.

Over the years, their partnership evolved into a balanced and mutually enriching research relationship. Their joint efforts have resulted in over 120 published papers and two books, setting new standards in the Mathematical Theory of Reliability and its applications. This collaboration has significantly influenced both their careers and contributed to Prof Finkelstein’s recognition with South Africa’s highest research accolades, including an NRF A1 rating in "Mathematical Sciences" in 2021, following his A2 rating in 2015.

 

A breakthrough in stochastic modelling

One of the major achievements of Prof Finkelstein's collaboration with Ewha has been their pioneering work in stochastic modelling. Their research led to the development of the Generalised Polya Process, a novel model for understanding natural and industrial point events - such as failures in electricity generation, lightning strikes, and hurricanes. By incorporating the ‘history’ of previous events, this model offers a more precise stochastic description of real-world phenomena.

The results of their research have been widely published and have paved the way for further exploration into more complex stochastic processes. Some of their key findings were summarised in the 2018 Springer book Point Processes for Reliability Analysis.

 

Looking ahead: Future collaboration and continued innovation

Despite being in the later years of his career, Prof Finkelstein remains deeply engaged in research and committed to his partnership with Ewha. Due to the challenges posed by the COVID-19 pandemic, his visits to Ewha were limited, but plans are now in place for future visits. During these visits, he will deliver lectures to students and collaborate with faculty members.

For Prof Finkelstein, continuing his nearly two-decade-long collaboration with Prof Cha remains a vital and exciting part of his academic journey. 

News Archive

UFS venture cleans up acid mine drainage
2015-07-06

The system that puts oxygen back into the water.

Photo: Supplied

South Africa is one of the most important mining countries in the world, beginning in the 1870s. Although the mining industry has been responsible for significant development and employment, it pollutes the environment and waters sources. Through the joint effort of a well-known mining company, the University of the Free State, and the Technology Innovation Agency (UFS/TIA) SAENSE Group, a new treatment for Acid Mine Drainage (AMD) has been developed.

The system treats the major contaminants found in acid mining wastewater effectively.  
 
The UFS remediation systems use a reservoir tank into which the AMD is pumped. The water then flows passively (without using energy) to the Barium Carbonate Dispersed Alkaline Substrate (BDAS) system. The metals and anions in the AMD react chemically with the barium carbonate and precipitate (form solids). The solids stay in the tank while the clean water is released.

The efficacy and applicability of the research was demonstrated on site in Belfast, Mpumalanga where the team constructed a pilot plant in July 2014. This patented technology has treated 1 814 400 litres of Acid Mine Drainage to date with an outflow water quality that satisfies the South African National Standards (SANS) 241:2006 & 2011 regulations for drinking water.   

Rohan Posthumus from the (UFS/TIA) SAENSE Group said: “At this stage, we do not recommend that the water should be used as drinking water, but certainly it can lower water usage in mines while finding application in dust suppression of washing processes. The team would like to complete a full characterisation of the final released water. There are currently no toxic by-products formed, and even very basic filtration can make the outflow drinking water.”

Prof Esta van Heerden’s research group from the Department of Microbial, Biochemical, and Food Biotechnology has been working on AMD research for some time, but the development of the BDAS system was started in 2013 by post-doctoral student, Dr Julio Castillo, and his junior researcher, Rohan Posthumus.

The data from the BDAS system have led to two publications in peer-reviewed journals as well as a registered patent.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept