Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 February 2025 | Story Martinette Brits | Photo Supplied
Prof Maxim Finkelstein, A1-rated researcher from the University of the Free State, has been selected as the 2024 - 2026 Ewha Global Fellow by Ewha Womans University.

An esteemed researcher from the University of the Free State (UFS), Prof Maxim Finkelstein, has been named a 2024 - 2026 Ewha Global Fellow (EGF) by Ewha Womans University in South Korea.

Prof Finkelstein, an A1-rated researcher from the Department of Mathematical Statistics and Actuarial Science, received this honour in recognition of his outstanding collaboration with Prof Ji Hwan Cha from Ewha’s Department of Statistics. Prof Cha nominated him as a leading expert in his field, highlighting their long-standing partnership and significant contributions to mathematical sciences.

According to Hyang-Sook Lee, President of the Ewha Womans University, the EGF programme “encourages distinguished scholars from all over the world to actively collaborate in research and education with Ewha faculty members.”

 

The genesis of a unique collaboration

Prof Finkelstein has collaborated extensively with researchers across Europe and the United States but his partnership with Prof Cha is particularly notable. “I started working at the UFS as a Professor in 1998 when he had just obtained his PhD,” recalls Prof Finkelstein.

At the time, Prof Finkelstein was already an established researcher, while Prof Cha was in the early stages. “His letter to me about one of my articles was sent to me by regular mail to my previous working address in Saint Petersburg, Russia, and did not reach me. We eventually connected around 2006, and our collaboration gradually took shape,” he explains.

Over the years, their partnership evolved into a balanced and mutually enriching research relationship. Their joint efforts have resulted in over 120 published papers and two books, setting new standards in the Mathematical Theory of Reliability and its applications. This collaboration has significantly influenced both their careers and contributed to Prof Finkelstein’s recognition with South Africa’s highest research accolades, including an NRF A1 rating in "Mathematical Sciences" in 2021, following his A2 rating in 2015.

 

A breakthrough in stochastic modelling

One of the major achievements of Prof Finkelstein's collaboration with Ewha has been their pioneering work in stochastic modelling. Their research led to the development of the Generalised Polya Process, a novel model for understanding natural and industrial point events - such as failures in electricity generation, lightning strikes, and hurricanes. By incorporating the ‘history’ of previous events, this model offers a more precise stochastic description of real-world phenomena.

The results of their research have been widely published and have paved the way for further exploration into more complex stochastic processes. Some of their key findings were summarised in the 2018 Springer book Point Processes for Reliability Analysis.

 

Looking ahead: Future collaboration and continued innovation

Despite being in the later years of his career, Prof Finkelstein remains deeply engaged in research and committed to his partnership with Ewha. Due to the challenges posed by the COVID-19 pandemic, his visits to Ewha were limited, but plans are now in place for future visits. During these visits, he will deliver lectures to students and collaborate with faculty members.

For Prof Finkelstein, continuing his nearly two-decade-long collaboration with Prof Cha remains a vital and exciting part of his academic journey. 

News Archive

Plant-strengthening agent a result of joint effort between UFS and German company
2015-07-27

Research over the past few years has showed that the agent applied mostly as a foliar spray subsequently leads to better seedlings as well as growth and yield enhancement of various crops.

The application of a plant-strengthening agent in the agricultural industry has, until recently, been largely ignored, says Dr Elmarie van der Watt of the Department of Soil, Crop, and Climate Sciences at the University of the Free State (UFS). The agent was co-developed by researchers at the UFS and a German company.

The product is moving into new markets, such as China, Vietnam, the USA, and Australia.

ComCat® was the result of extensive research by the German company Agraforum AG. Commercialisation was limited initially to Europe, while research was expanded to other parts of the world, with the University of the Free State as the main research centre.  ComCat® is a unique, non-toxic plant strengthening agent derived from wild plants. It enhances plant growth and yield, as well as resistance against abiotic and biotic stress factors.

Dr Van der Watt says that, in nature, plants communicate and interact by means of allelochemicals (the inherent silent tool of self-protection among plants) and other phytochemicals (chemical compounds that occur naturally in plants), as part of their resistance mechanisms towards biotic and abiotic stress conditions.

Most wild-plant varieties are usually well-adapted to resist these stress factors. However, monoculture crops have lost this ability to a large extent. “Active compounds contained in extracts from wild plants applied to monoculture crops can potentially supply the signal for the latter to activate their dormant resistance mechanisms.” 

Research over the past few years has showed that the agent applied mostly as a foliar spray subsequently leads to better seedlings as well as growth and yield enhancement of various crops.  A major advantage is that, despite its enhancing effects on root development and yield, it does not induce unwanted early vegetative growth that could jeopardise the final yield, as happened in the past for nitrogen application at an early growth stage. 

Dr Van der Watt says, “Physiological data on the effect of the natural bio-stimulant product on photosynthesis, respiration, and resistance towards biotic stress conditions indicate that it can be regarded as a useful tool to manipulate agricultural crops. Research also showed that the field of application for this natural product is never-ending, and new applications are being investigated every day.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept