Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 February 2025 | Story Martinette Brits | Photo Supplied
Prof Maxim Finkelstein, A1-rated researcher from the University of the Free State, has been selected as the 2024 - 2026 Ewha Global Fellow by Ewha Womans University.

An esteemed researcher from the University of the Free State (UFS), Prof Maxim Finkelstein, has been named a 2024 - 2026 Ewha Global Fellow (EGF) by Ewha Womans University in South Korea.

Prof Finkelstein, an A1-rated researcher from the Department of Mathematical Statistics and Actuarial Science, received this honour in recognition of his outstanding collaboration with Prof Ji Hwan Cha from Ewha’s Department of Statistics. Prof Cha nominated him as a leading expert in his field, highlighting their long-standing partnership and significant contributions to mathematical sciences.

According to Hyang-Sook Lee, President of the Ewha Womans University, the EGF programme “encourages distinguished scholars from all over the world to actively collaborate in research and education with Ewha faculty members.”

 

The genesis of a unique collaboration

Prof Finkelstein has collaborated extensively with researchers across Europe and the United States but his partnership with Prof Cha is particularly notable. “I started working at the UFS as a Professor in 1998 when he had just obtained his PhD,” recalls Prof Finkelstein.

At the time, Prof Finkelstein was already an established researcher, while Prof Cha was in the early stages. “His letter to me about one of my articles was sent to me by regular mail to my previous working address in Saint Petersburg, Russia, and did not reach me. We eventually connected around 2006, and our collaboration gradually took shape,” he explains.

Over the years, their partnership evolved into a balanced and mutually enriching research relationship. Their joint efforts have resulted in over 120 published papers and two books, setting new standards in the Mathematical Theory of Reliability and its applications. This collaboration has significantly influenced both their careers and contributed to Prof Finkelstein’s recognition with South Africa’s highest research accolades, including an NRF A1 rating in "Mathematical Sciences" in 2021, following his A2 rating in 2015.

 

A breakthrough in stochastic modelling

One of the major achievements of Prof Finkelstein's collaboration with Ewha has been their pioneering work in stochastic modelling. Their research led to the development of the Generalised Polya Process, a novel model for understanding natural and industrial point events - such as failures in electricity generation, lightning strikes, and hurricanes. By incorporating the ‘history’ of previous events, this model offers a more precise stochastic description of real-world phenomena.

The results of their research have been widely published and have paved the way for further exploration into more complex stochastic processes. Some of their key findings were summarised in the 2018 Springer book Point Processes for Reliability Analysis.

 

Looking ahead: Future collaboration and continued innovation

Despite being in the later years of his career, Prof Finkelstein remains deeply engaged in research and committed to his partnership with Ewha. Due to the challenges posed by the COVID-19 pandemic, his visits to Ewha were limited, but plans are now in place for future visits. During these visits, he will deliver lectures to students and collaborate with faculty members.

For Prof Finkelstein, continuing his nearly two-decade-long collaboration with Prof Cha remains a vital and exciting part of his academic journey. 

News Archive

Studies to reveal correlation between terrain, energy use, and giraffe locomotion
2016-11-18



More than half of giraffes in captivity in Europe are afflicted by lameness. This high prevalence represents an important welfare issue, similar to other large zoo animals.

According to Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, giraffes in captivity are often afflicted by overgrown hooves, laminitis and joint problems. Diagnosis and treatment is limited by our understanding of anatomy and function, more specifically the locomotion of these animals. Although the giraffe is such a well-known and iconic animal, relatively little has been studied about their locomotor behaviour.

Dr Basu recently visited South Africa to do fieldwork on the locomotion of giraffes as part of his PhD studies under the mentorship of world-renowned Professor of Evolutionary Biomechanics, Prof John Hutchinson. This project is a joint venture between Dr Basu and Dr Francois Deacon, researcher in the Department of Animal, Wildlife, and Grassland Sciences at the UFS. Dr Deacon is a specialist in giraffe habitat-related research. 

Together Prof Hutchinson and Drs Deacon and Basu form a research group, working on studies about giraffe locomotion.

Wild giraffe population decrease by 40% in past decade

“Locomotion is one of the most common animal behaviours and comes with a significant daily energetic cost. Studying locomotion of wild animals aids us in making estimates of this energetic cost. Such estimates are useful in understanding how giraffes fit into ecosystems. Future conservation efforts will be influenced by knowledge of the energy demands in giraffes.

“Understanding aspects of giraffe locomotion also helps us to understand the relationships between anatomy, function and evolution. This is relevant to our basic understanding of the natural world, as well as to conservation and veterinary issues,” said Dr Deacon.

Locomotion study brings strategy for specialist foot care

On face value it seems as if foot disease pathologies are more common in zoo giraffes than in wild giraffes. “However, we need a good sample of data from both populations to prove this assumption,” said Dr Basu. 

This phenomenon is not well understood at the moment, but it’s thought that diet, substrate (e.g. concrete, straw, sand and grass) and genetics play a part in foot disease in giraffes. “Understanding how the feet are mechanically loaded during common activities (standing, walking, running) gives our research group ideas of where the highest strains occur, and later how these can be reduced through corrective foot trimming,” said Dr Basu.

Through the studies on giraffe locomotion, the research group plans to devise strategies for corrective foot trimming. At the moment, foot trimming is done with the best evidence available, which is extrapolation from closely related animals such as cattle. “But we know that giraffes’ specialist anatomy will likely demand specialist foot care,” Dr Basu said.

Studying giraffes in smaller versus larger spaces

The research group has begun to study the biomechanics of giraffe walking by looking at the kinematics (the movement) and the kinetics (the forces involved in movement) during walking strides. For this he studied adult giraffes at three zoological parks in the UK. 

However, due to the close proximity of fencing and buildings, it is not practical to study fast speeds in a zoo setting. 

A setting such as the Willem Pretorius Nature Reserve, near Ventersburg in the Free State, Kwaggafontein Nature Reserve, near Colesberg in the Karoo, and the Woodland Hills Wildlife Estate in Bloemfontein are all ideal for studying crucial aspects such as “faster than walking” speeds and gaits to measure key parameters (such as stride length, step frequency and stride duration). These studies are important to understand how giraffe form and function are adapted to their full range of locomotor behaviours. It also helps to comprehend the limits on athletic capacity in giraffes and how these compare to other animals. 

Drones open up unique opportunities for studying giraffes

The increasing availability of unmanned aerial vehicles (UAVs)/drones opens up unique opportunities for studying locomotion in animals like giraffes. Cameras mounted onto remotely controlled UAVs are a straightforward way to obtain high-quality video footage of giraffes while they run at different speeds.

“Using two UAVs, we have collected high definition slow motion video footage of galloping giraffes from three locations in the Free State. We have also collected detailed information about the terrain that the giraffes walked and ran across. From this we have created 3D maps of the ground. These maps will be used to examine the preferred terrain types for giraffes, and to see how different terrains affect their locomotion and energy use,” said Dr Deacon.

“The raw data (videos) will be digitised to obtain the stride parameters and limb angles of the animals. Later this will be combined with anatomical data and an estimation of limb forces to estimate the power output of the limbs and how that changes between different terrains,” said Dr Basu.


Related articles:

23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept