Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 February 2025 | Story Anthony Mthembu | Photo Kaleidoscope Studios
G20 - 2025
G20 delegates from member countries and other invited guests in attendance at the G20 Research and Innovation Working Group (RIWG) and G20 Initiative on Bioeconomy (GIB) meetings and other side events.

Against the backdrop of the upcoming G20 Summit to be hosted by South Africa in November 2025, the University of the Free State (UFS) – in partnership with the Department of Science, Technology and Innovation (DSTI) – held the G20 Research and Innovation Working Group (RIWG) and G20 Initiative on Bioeconomy (GIB) meetings on 23 and 24 February 2025.

In her opening address to G20 delegates from member countries, national and international knowledge partners, members of the Free State provincial government, and representatives of the DSTI, Prof Hester Klopper, Vice-Chancellor and Principal of the UFS, indicated, “It is an honour for the UFS to be among the few South African universities to host this essential Research and Innovation Working Group.” In addition, she highlighted that the deliberations and discussions set to take place during this important workshop can set in motion chains of events ultimately contributing to improved lives for everyone. These sentiments were also echoed by Prof Blade Nzimande, Minister of Science, Technology and Innovation, who underscored the importance and historic nature of the upcoming G20 Summit.

In his virtual address, Minister Nzimande explained that South Africa’s chosen theme for the G20 Summit – Solidarity, Equality and Sustainability – was inspired by the general complexity of our time, “in particular the transnational nature of these complexities, such as conflict, the displacement of people, poverty”, among other things. As such, he expressed that in this case, cooperation among nations is becoming increasingly essential.

As they concluded their addresses, Prof Nzimande and Prof Klopper, wished the delegates well in their deliberations. ‘’May your discussions be successful, and your goals be achieved. And may your time with us lead to a renewed experience of the value of innovation through connection, ‘’expressed Prof Klopper.

 

Contributing events

As part of the programme at these proceedings, several side events took place. These included panel discussions with indigenous knowledge holders such as Telle Hoeses, Chief Language Practitioner for Khoi and San Languages, along with experts of indigenous medicine. The conversation focused on indigenous knowledge systems (IKS) and some of the key concerns and progress that these knowledge holders have made in the space. In addition, these knowledge holders, many of whom are business owners who sell products made from indigenous medicines, also had the opportunity to exhibit their products. According to Dan du Toit, Deputy Director-General: International Cooperation and Resources at the DSTI, these panel discussions with young people, bioeconomy researchers, and indigenous knowledge holders were an opportunity to gain access to a diversity of voices, which would not normally find expression in formal meetings. “It is also an opportunity for our international guests to get insight into who we are as a country and what some of our concerns might be,” said Du Toit.

One of the highly anticipated side events on the programme was the joint G20 RIWG and GIB event titled ‘UNESCO Women and Girls in Science’, which took place on 25 February 2025. The event took the form of a round-table discussion, in an attempt to answer the question: Based on your experiences in various roles within higher education in South Africa, Africa, and globally, what are some key insights regarding the role of universities in closing the gender gap in STEM, specifically concerning professional development and creating supportive research environments where everyone, especially women, can thrive?

Prof Anthea Rhoda; Deputy Vice-Chancellor: Academic at the UFS, was one of the contributors in this session. In response to the question, Prof Rhoda highlighted, “Universities should also be spaces characterised by intellectual freedom and freedom of expression, where archaic ideas about male superiority and patriarchy can be openly confronted and contested, without fear of victimisation. She expressed that an active way in which the UFS has committed itself to a culture of diversity and inclusion is through Vision130.

As she was wrapping up her address, Prof Rhoda also highlighted, “To address areas of underrepresentation of women in senior academic and leadership positions within the university, a Working Group on Gender Parity in Academic Leadership was established, with the critical mandate to drive attitudinal shifts, advocate for changes where necessary, and highlight barriers to women’s advancement.”

 

The programme comes to an end

The last day of the programme was reserved for comments, reflections, and discussions on deliverables. As such, there were positive responses to the way the deliberations took place. In fact, Hoese, speaking in her capacity as an indigenous knowledge holder, said, “This was a good platform for us to make progress towards language recognition and officialisation.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept