Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 February 2025 | Story Anthony Mthembu | Photo Kaleidoscope Studios
G20 - 2025
G20 delegates from member countries and other invited guests in attendance at the G20 Research and Innovation Working Group (RIWG) and G20 Initiative on Bioeconomy (GIB) meetings and other side events.

Against the backdrop of the upcoming G20 Summit to be hosted by South Africa in November 2025, the University of the Free State (UFS) – in partnership with the Department of Science, Technology and Innovation (DSTI) – held the G20 Research and Innovation Working Group (RIWG) and G20 Initiative on Bioeconomy (GIB) meetings on 23 and 24 February 2025.

In her opening address to G20 delegates from member countries, national and international knowledge partners, members of the Free State provincial government, and representatives of the DSTI, Prof Hester Klopper, Vice-Chancellor and Principal of the UFS, indicated, “It is an honour for the UFS to be among the few South African universities to host this essential Research and Innovation Working Group.” In addition, she highlighted that the deliberations and discussions set to take place during this important workshop can set in motion chains of events ultimately contributing to improved lives for everyone. These sentiments were also echoed by Prof Blade Nzimande, Minister of Science, Technology and Innovation, who underscored the importance and historic nature of the upcoming G20 Summit.

In his virtual address, Minister Nzimande explained that South Africa’s chosen theme for the G20 Summit – Solidarity, Equality and Sustainability – was inspired by the general complexity of our time, “in particular the transnational nature of these complexities, such as conflict, the displacement of people, poverty”, among other things. As such, he expressed that in this case, cooperation among nations is becoming increasingly essential.

As they concluded their addresses, Prof Nzimande and Prof Klopper, wished the delegates well in their deliberations. ‘’May your discussions be successful, and your goals be achieved. And may your time with us lead to a renewed experience of the value of innovation through connection, ‘’expressed Prof Klopper.

 

Contributing events

As part of the programme at these proceedings, several side events took place. These included panel discussions with indigenous knowledge holders such as Telle Hoeses, Chief Language Practitioner for Khoi and San Languages, along with experts of indigenous medicine. The conversation focused on indigenous knowledge systems (IKS) and some of the key concerns and progress that these knowledge holders have made in the space. In addition, these knowledge holders, many of whom are business owners who sell products made from indigenous medicines, also had the opportunity to exhibit their products. According to Dan du Toit, Deputy Director-General: International Cooperation and Resources at the DSTI, these panel discussions with young people, bioeconomy researchers, and indigenous knowledge holders were an opportunity to gain access to a diversity of voices, which would not normally find expression in formal meetings. “It is also an opportunity for our international guests to get insight into who we are as a country and what some of our concerns might be,” said Du Toit.

One of the highly anticipated side events on the programme was the joint G20 RIWG and GIB event titled ‘UNESCO Women and Girls in Science’, which took place on 25 February 2025. The event took the form of a round-table discussion, in an attempt to answer the question: Based on your experiences in various roles within higher education in South Africa, Africa, and globally, what are some key insights regarding the role of universities in closing the gender gap in STEM, specifically concerning professional development and creating supportive research environments where everyone, especially women, can thrive?

Prof Anthea Rhoda; Deputy Vice-Chancellor: Academic at the UFS, was one of the contributors in this session. In response to the question, Prof Rhoda highlighted, “Universities should also be spaces characterised by intellectual freedom and freedom of expression, where archaic ideas about male superiority and patriarchy can be openly confronted and contested, without fear of victimisation. She expressed that an active way in which the UFS has committed itself to a culture of diversity and inclusion is through Vision130.

As she was wrapping up her address, Prof Rhoda also highlighted, “To address areas of underrepresentation of women in senior academic and leadership positions within the university, a Working Group on Gender Parity in Academic Leadership was established, with the critical mandate to drive attitudinal shifts, advocate for changes where necessary, and highlight barriers to women’s advancement.”

 

The programme comes to an end

The last day of the programme was reserved for comments, reflections, and discussions on deliverables. As such, there were positive responses to the way the deliberations took place. In fact, Hoese, speaking in her capacity as an indigenous knowledge holder, said, “This was a good platform for us to make progress towards language recognition and officialisation.”

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept