Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 February 2025 | Story Onthatile Tikoe | Photo Supplied
Shimlas 2024
The UFS Shimlas lifting the Varsity Cup on their home ground in Bloemfontein after their 2024 victory.

The highly anticipated Varsity Cup is finally here, and the University of the Free State (UFS) is buzzing with excitement! The tournament, which features the top university rugby teams in South Africa, promises to deliver thrilling matches and intense rivalries throughout the rugby season.

After an exhilarating 2024 season, the UFS Shimlas made history by lifting the Varsity Cup trophy on their home ground in Bloemfontein. The team’s impressive performance and dedication earned them a spot in the record books, and they are eager to repeat their success in 2025.

This year’s competition is scheduled to kick off on 17 February 2025 and will run for 7 weeks, with the UFS final game on 31 March 2025. The UFS Shimlas will be looking to defend their title and bring home the coveted trophy once again.

Previous winners

The Varsity Cup has a rich history, with previous winners including:

UFS Shimlas (2015, 2024)
Maties (Stellenbosch University, 2008-2010, 2019)
Tuks (University of Pretoria, 2012, 2013, 2017, 2021, 2022)
UCT Ikey Tigers (2011, 2014)

FNB NWU (2016, 2023)

UFS ready to take on the best

The UFS Shimlas have been preparing tirelessly for the tournament, with a strong focus on teamwork, discipline, and strategy. Head Coach André Tredoux expressed his excitement about the team’s prospects: “Being the defending champions comes with a bit of pressure, but we don’t see it that way. Our motto is that we want to attack the Varsity Cup, hence the best form of defence is to attack. The boys are really excited. They played well against UJ and scored lots of tries, hence our mindset is to attack everything we put our minds to.”

UFS Shimlas Team Captain Nkoka Ngobe echoed his coach’s sentiments, reinforcing his dedication to leading the team to victory. “As the team captain, I have to lead by example and bring the culture of excellence. I will never ask my teammates to do something that I cannot do, so the important thing for me is doing what it takes so that the boys can do the same.”

Get ready for the action

The Varsity Cup promises to deliver seven weeks of non-stop rugby action, with the UFS Shimlas ready to take on the best university teams in the country. Don’t miss out on the excitement – follow the UFS Shimlas on social media to stay up to date and get ready to cheer them on to victory!

Let’s go, Shimlas!

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept