Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
13 February 2025 | Story Onthatile Tikoe | Photo Supplied
Shimlas 2024
The UFS Shimlas lifting the Varsity Cup on their home ground in Bloemfontein after their 2024 victory.

The highly anticipated Varsity Cup is finally here, and the University of the Free State (UFS) is buzzing with excitement! The tournament, which features the top university rugby teams in South Africa, promises to deliver thrilling matches and intense rivalries throughout the rugby season.

After an exhilarating 2024 season, the UFS Shimlas made history by lifting the Varsity Cup trophy on their home ground in Bloemfontein. The team’s impressive performance and dedication earned them a spot in the record books, and they are eager to repeat their success in 2025.

This year’s competition is scheduled to kick off on 17 February 2025 and will run for 7 weeks, with the UFS final game on 31 March 2025. The UFS Shimlas will be looking to defend their title and bring home the coveted trophy once again.

Previous winners

The Varsity Cup has a rich history, with previous winners including:

UFS Shimlas (2015, 2024)
Maties (Stellenbosch University, 2008-2010, 2019)
Tuks (University of Pretoria, 2012, 2013, 2017, 2021, 2022)
UCT Ikey Tigers (2011, 2014)

FNB NWU (2016, 2023)

UFS ready to take on the best

The UFS Shimlas have been preparing tirelessly for the tournament, with a strong focus on teamwork, discipline, and strategy. Head Coach André Tredoux expressed his excitement about the team’s prospects: “Being the defending champions comes with a bit of pressure, but we don’t see it that way. Our motto is that we want to attack the Varsity Cup, hence the best form of defence is to attack. The boys are really excited. They played well against UJ and scored lots of tries, hence our mindset is to attack everything we put our minds to.”

UFS Shimlas Team Captain Nkoka Ngobe echoed his coach’s sentiments, reinforcing his dedication to leading the team to victory. “As the team captain, I have to lead by example and bring the culture of excellence. I will never ask my teammates to do something that I cannot do, so the important thing for me is doing what it takes so that the boys can do the same.”

Get ready for the action

The Varsity Cup promises to deliver seven weeks of non-stop rugby action, with the UFS Shimlas ready to take on the best university teams in the country. Don’t miss out on the excitement – follow the UFS Shimlas on social media to stay up to date and get ready to cheer them on to victory!

Let’s go, Shimlas!

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept