Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 January 2025 | Story Anthony Mthembu | Photo Supplied
Prof Solomon Werta
Prof Solomon Werta, UFS alumnus and Vice-President: Administration and Development at Dire Dawa University, continues to inspire as one of Ethiopia's youngest leaders in higher education.

Throughout the progression of his career, the UFS alumnus, Prof Solomon Werta – Vice-President: Administration and Development at the Dire Dawa University (DDU) – has been the ‘youngest’ to occupy positions of leadership in several instances. 

In fact, the DDU appointed Prof Werta as Vice-President: Research and Community Service in 2020, making him the youngest vice-president of any public university in Ethiopia. According to Prof Werta, when it comes to senior management roles in universities and government, the norm is that the positions are held by middle-aged, mature leaders. However, after a unanimous vote by senate members at the university, he assumed that role at the age of 31. “Holding such a senior position at that age makes me a role model not only for a generation of young people, but for those at the University of the Free State who may be following my career,” Prof Werta stated. 

What the role entailed 

As Vice-President: Research and Community Service, he was responsible for driving research, innovation, technology transfer, community engagement, and growth within the institution and the community at large. As such, some of his highlights within this role include establishing a university community radio station to serve both the university and the Dire Dawa community, establishing new university journals such as the Harla journal, and establishing a nationally accredited institutional review board, among others. 

He occupied this role until November 2023 when he was promoted to his current role as Vice-President: Administration and Development at the DDU. Prof Werta credits this most recent promotion to the dedication and hard work he put into his previous role, as well as the knowledge and experience he acquired during his time at the UFS. 

In recognition of his work as a researcher within the Department of Physics at the DDU, Prof Werta was also promoted to Associate Professor in Physics. As a result, he indicates that he can be regarded as the youngest associate professor of physics in Ethiopia. Therefore, he continues to contribute to his institution and beyond on these accounts. 

What the future holds 

Prof Werta indicated that he plans on continuing to make strides as his career progresses, particularly in his role as Vice-President: Administration and Development. “I’d like to focus on increasing the university’s internal revenue, particularly through urban farming and other businesses using our academics,” said Prof Werta. In addition, he would also like to work on changing the university’s internal business practices, particularly the automation and digitalisation of the university system and the implementation of a contemporary university property management system, among others. 

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept