Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 January 2025 | Story Anthony Mthembu | Photo Supplied
Prof Solomon Werta
Prof Solomon Werta, UFS alumnus and Vice-President: Administration and Development at Dire Dawa University, continues to inspire as one of Ethiopia's youngest leaders in higher education.

Throughout the progression of his career, the UFS alumnus, Prof Solomon Werta – Vice-President: Administration and Development at the Dire Dawa University (DDU) – has been the ‘youngest’ to occupy positions of leadership in several instances. 

In fact, the DDU appointed Prof Werta as Vice-President: Research and Community Service in 2020, making him the youngest vice-president of any public university in Ethiopia. According to Prof Werta, when it comes to senior management roles in universities and government, the norm is that the positions are held by middle-aged, mature leaders. However, after a unanimous vote by senate members at the university, he assumed that role at the age of 31. “Holding such a senior position at that age makes me a role model not only for a generation of young people, but for those at the University of the Free State who may be following my career,” Prof Werta stated. 

What the role entailed 

As Vice-President: Research and Community Service, he was responsible for driving research, innovation, technology transfer, community engagement, and growth within the institution and the community at large. As such, some of his highlights within this role include establishing a university community radio station to serve both the university and the Dire Dawa community, establishing new university journals such as the Harla journal, and establishing a nationally accredited institutional review board, among others. 

He occupied this role until November 2023 when he was promoted to his current role as Vice-President: Administration and Development at the DDU. Prof Werta credits this most recent promotion to the dedication and hard work he put into his previous role, as well as the knowledge and experience he acquired during his time at the UFS. 

In recognition of his work as a researcher within the Department of Physics at the DDU, Prof Werta was also promoted to Associate Professor in Physics. As a result, he indicates that he can be regarded as the youngest associate professor of physics in Ethiopia. Therefore, he continues to contribute to his institution and beyond on these accounts. 

What the future holds 

Prof Werta indicated that he plans on continuing to make strides as his career progresses, particularly in his role as Vice-President: Administration and Development. “I’d like to focus on increasing the university’s internal revenue, particularly through urban farming and other businesses using our academics,” said Prof Werta. In addition, he would also like to work on changing the university’s internal business practices, particularly the automation and digitalisation of the university system and the implementation of a contemporary university property management system, among others. 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept