Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 January 2025 | Story Anthony Mthembu | Photo Supplied
Prof Solomon Werta
Prof Solomon Werta, UFS alumnus and Vice-President: Administration and Development at Dire Dawa University, continues to inspire as one of Ethiopia's youngest leaders in higher education.

Throughout the progression of his career, the UFS alumnus, Prof Solomon Werta – Vice-President: Administration and Development at the Dire Dawa University (DDU) – has been the ‘youngest’ to occupy positions of leadership in several instances. 

In fact, the DDU appointed Prof Werta as Vice-President: Research and Community Service in 2020, making him the youngest vice-president of any public university in Ethiopia. According to Prof Werta, when it comes to senior management roles in universities and government, the norm is that the positions are held by middle-aged, mature leaders. However, after a unanimous vote by senate members at the university, he assumed that role at the age of 31. “Holding such a senior position at that age makes me a role model not only for a generation of young people, but for those at the University of the Free State who may be following my career,” Prof Werta stated. 

What the role entailed 

As Vice-President: Research and Community Service, he was responsible for driving research, innovation, technology transfer, community engagement, and growth within the institution and the community at large. As such, some of his highlights within this role include establishing a university community radio station to serve both the university and the Dire Dawa community, establishing new university journals such as the Harla journal, and establishing a nationally accredited institutional review board, among others. 

He occupied this role until November 2023 when he was promoted to his current role as Vice-President: Administration and Development at the DDU. Prof Werta credits this most recent promotion to the dedication and hard work he put into his previous role, as well as the knowledge and experience he acquired during his time at the UFS. 

In recognition of his work as a researcher within the Department of Physics at the DDU, Prof Werta was also promoted to Associate Professor in Physics. As a result, he indicates that he can be regarded as the youngest associate professor of physics in Ethiopia. Therefore, he continues to contribute to his institution and beyond on these accounts. 

What the future holds 

Prof Werta indicated that he plans on continuing to make strides as his career progresses, particularly in his role as Vice-President: Administration and Development. “I’d like to focus on increasing the university’s internal revenue, particularly through urban farming and other businesses using our academics,” said Prof Werta. In addition, he would also like to work on changing the university’s internal business practices, particularly the automation and digitalisation of the university system and the implementation of a contemporary university property management system, among others. 

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept