Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
30 January 2025 | Story Jacky Tshokwe | Photo Supplied
Samantha Durrant
Samantha Durrant, the first violinist and Artistic Leader of the Odeion String Quartet, appointed since May 2024.

In the world of music, certain instruments resonate not just with sound, but with profound emotion and history. For Samantha Durrant, her journey with the violin began at the tender age of seven, inspired by the heartfelt story of Music of the Heart. This film, coupled with her exposure to the harmonious symphonies of the KwaZulu-Natal Philharmonic Orchestra, planted seeds that grew into a lifelong devotion to the violin and classical music.

Now, as part of the Odeion String Quartet – the only quartet in residence at a South African university – Durrant stands at the forefront of a mission that transcends performance. She sees her role not only as a performer, but as a steward of South Africa’s string-playing legacy. Her vision is bold yet grounded: to make the Odeion String Quartet the centrepiece of string training and performance in the country.

Reflecting on her journey, Durrant emphasises the critical role of mentorship, exposure, and perseverance. "There wasn’t one pivotal moment in my career," she shares. "It was the culmination of experiences with colleagues, mentors, and friends, all encouraging me to push my boundaries."

The Odeion String Quartet is bridging South African talent with global excellence, performing works by masters such as Haydn and Beethoven while celebrating contemporary compositions, including those from South Africa's rich tapestry of composers. For Durrant, the opportunity to collaborate with living composers is an unparalleled gift, offering insights into their inspirations and musical intentions.

Education and community are at the heart of the quartet's mission. Through school concerts, youth orchestra engagements, and performances at prestigious events such as the Vice-Chancellor’s Concert and the Rector’s Farewell, the quartet inspires audiences of all ages. "Youth orchestras represent unity," Durrant notes. "They bring people together, showcasing our shared humanity."

To those stepping into the challenging world of music, Durrant offers sage advice: "Be patient with yourself. Understand that this field is not easy, but the journey of self-discovery it offers is unparalleled."

With a packed performance calendar and ambitious goals for the quartet’s future, Durrant remains hopeful about music's place in society. "Music has the power to heal, inspire, and unite," she says. "In these challenging times, it is balm for the soul – an essential part of our humanity."

As the Odeion String Quartet continues its journey, its melodies remind us of the transformative power of music, resonating with hope and possibility across generations.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept